Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE
Chemistry (8CH0)
Paper 01 Core Inorganic and Physical Chemistry

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P70801
Publications Code 8CHO_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- $\quad$ There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.


## Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
( ) means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

## Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{1}$ | The only correct answer is $\mathbf{D}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right)$ | (1) |
|  | $\mathbf{A}$ is not correct because two electrons have been removed instead of added to the sulfur atom |  |
| $\mathbf{B}$ is not correct because this is the electronic configuration of the sulfur atom |  |  |
| $\mathbf{C}$ is not correct because this is the incorrect electronic configuration of the sulfur atom |  |  |


| Question <br> Number | Answer | Mark |
| :---: | :---: | :---: |
| 2 | The only correct answer is C (503 9653458 4530) <br> A is not correct because there is no significant rise from $2^{\text {nd }}$ to $3^{\text {rd }} I E$, therefore not a Group 2 element <br> B is not correct because there is a significant rise between $1^{\text {st }}$ and $2^{\text {nd }}$ IEs, indicating a Group 1 element <br> D is not correct because there is a significant rise from $3^{\text {rd }}$ to $4^{\text {th }} I E$, indicating a Group 3 element | (1) |

(Total for Question 2 = 1 mark)

| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 3 (a) | An answer that makes reference to the following points: <br> - first error: ‘emitted’ <br> and <br> correction: replace with 'absorbed' <br> - second error: 'ions (move up)' <br> and <br> correction: remove 'ions' replace with 'electron(s)' <br> - third error: 'is always' <br> and <br> correction: remove 'always' replace with 'may be / sometimes' | Allow the three errors in any order <br> The mark is for replacement by 'electron(s)' Allow 'electron(s) in ions' <br> Allow expression that implies that the radiation can be emitted as visible light, e.g. ‘usually' visible light <br> Do not award 'the error is lower energy levels' replace with return to ground state | (3) |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{3 ~ ( b ) ~}$ | The only correct answer is C (sodium iodide) | (1) |
|  | A is not correct because calcium in calcium chloride gives a 'brick red' flame |  |
|  | $\mathbf{B}$ is not correct because lithium in lithium carbonate gives a 'crimson red' flame |  |
|  | D is not correct because strontium in strontium bromide gives a 'red' flame |  |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{3 ~ ( c ) ~}$ | The only correct answer is D (Platinum) | (1) |
|  | A is not correct because copper will give a flame colour |  |
| $\mathbf{B}$ is not correct because iron is insufficiently inert |  |  |
|  | $\mathbf{C}$ is not correct because magnesium will burn with a white flame |  |


| Question <br> Number | Answer |  | Mark |
| :---: | :---: | :--- | :---: |
| $\mathbf{3 ( d ) ( i )}$ | • silver nitrate (solution) / chlorine | Allow correct formula/AgNO <br> If both name and formula are given both must <br> be correct <br> Allow acidified silver nitrate (solution) <br> Ignore addition of nitric acid <br> Do not award sulfuric acid $/$ hydrochloric acid | (1) |
|  |  | Do not award conc. sulfuric acid here but <br> allow TE in dii |  |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 3 (d)(ii) | An answer that makes reference to the following points: <br> - cream/off-white precipitate <br> - AgBr | Do not accept just 'white' or 'yellow' Accept (very) pale yellow <br> Ignore name Ignore unbalanced equation <br> Award (2) marks for use of chlorine: orange / brown fumes / solution $\mathrm{Br}_{2}$ (gas / aq) <br> Allow TE (2) marks for use of conc. sulfuric acid in 3di choking fumes $\mathrm{SO}_{2}(\mathrm{~g})$ | (2) |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{4 ( a )}$ | The only correct answer is $\mathrm{C}(\mathrm{p}=1, \mathrm{n}=2, \mathrm{e}=1)$ <br> A is not correct because the number of protons $(p)$ and neutrons $(n)$ are reversed, and the number of <br> electrons is incorrect <br> B is not correct because an atom of ${ }^{3} \mathrm{H}$ contains one electron <br> D is not correct because the number of protons $(p)$ and neutrons $(n)$ are reversed, and an atom of ${ }^{3} \mathrm{H}$ <br> contains only one electron |  |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |  |
| :---: | :--- | :--- | :--- | :---: |
| $\mathbf{4 ( b ) ( i )}$ | - relative abundance of missing isotope $\left({ }^{37} \mathrm{Cl}\right)$ | $\mathbf{( 1 )}$ | Example of calculation <br> $(100-75.5)=24.5$ <br> - relative height of missing peak | $\mathbf{( 1 )}$ |
|  |  | $\frac{82.5 \times 24.5}{75.5}=26.772$ <br> Ignore SF except 1 SF <br> DNA incorrect rounding for M2 <br> Correct answer with no working scores (2) <br> TE on M1 |  |  |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 4 (b)(ii) | - (there are) three (possible) combinations of the two isotopes in chlorine molecules/Cl2 | Allow a specific illustration using these 3 combinations $\begin{aligned} & { }^{35} \mathrm{Cl}^{35} \mathrm{Cl}=70 \\ & { }^{35} \mathrm{Cl}^{37} \mathrm{Cl}=72 \\ & { }^{37} \mathrm{Cl}^{37} \mathrm{Cl}=74 \end{aligned}$ | (1) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 4 (b)(iii) | - probability of two ${ }^{35} \mathrm{Cl}$ atoms <br> - probability of ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ atoms <br> - probability of two ${ }^{37} \mathrm{Cl}$ atoms | Example of calculation $\begin{align*} & 3 / 4 \times 3 / 4=9 / 16=0.5625  \tag{1}\\ & 2 \times 3 / 4 \times 1 / 4=6 / 16=2 \times 0.1875=0.36995  \tag{1}\\ & 1 / 4 \times 1 / 4=1 / 16=0.0625 \\ & \text { (so ratio is } 9: 6: 1 \text { ) } \end{align*}$ <br> Allow alternative explanations and calculations but the logic must be clear. <br> e.g. probability tree (3 max) measurement of peak heights from graph (2 max) eg 3.8:2.4:0.4 = ratio 9:6:1 (approx.) | (3) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :--- | :---: |
| $\mathbf{4 ( c ) ( \mathbf { i } )}$ | • relative molecular mass | 170 <br> May be shown on graph <br> Do not award peak at 171 | (1) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :--- | :---: |
| $\mathbf{4}$ (c)(ii) | $\bullet \mathrm{C}_{12} \mathrm{H}_{26}$ | Allow TE from (c)(i) provided $\mathrm{H} / \mathrm{C}$ <br> could exist eg DNA $57=\mathrm{C}_{4} \mathrm{H}_{9}$ <br> Allow $\mathrm{C}_{13} \mathrm{H}_{14}$ | (1) |


| Question Number | Acceptable Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4 (d) | An answer that makes reference to the following points: <br> - calculation of moles of carbon/carbon dioxide <br> - calculation of moles of water <br> - calculation of moles of hydrogen <br> - calculation of empirical formula | (1) <br> (1) <br> (1) <br> (1) | Example of calculation <br> Moles of carbon dioxide $=3.14 \div 44=$ 0.071364 (mol) <br> Moles of carbon $=0.071364(\mathrm{~mol})$ <br> Moles of water $=1.29 \div 18=0.071667$ (mol) <br> Moles of hydrogen $=0.071667 \times 2=$ 0.14333 (mol) <br> Ratio of moles C:H = $0.071364: 0.14333=1: 2 .(001)$ <br> Empirical formula $=\mathrm{CH}_{2}$ <br> TE on M4 for lost M3 (no $\times 2$ ), so CH <br> TE on moles of $C$ and $H$ | (4) |

(Total for Question 4 = 13 marks)

| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| $\mathbf{5}$ (a) | • $222(\mathrm{~K})$ | allow answers in the range 200 to $240(\mathrm{~K})$ | (1) |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{5}$ (b) | The only correct answer is $\mathbf{B}\left(50^{\circ} \mathrm{C}\right)$ | (1) |
| $\mathbf{A}$ is not correct because $40^{\circ} \mathrm{C}$ would imply much greater disruption to the intermolecular forces |  |  |
| $\mathbf{C}$ is not correct because two side groups would be expected to provide more disruption to |  |  |
| intermolecular forces |  |  |
| $\mathbf{D}$ is not correct because the trend (caused by side groups) is to lower the boiling temperature |  |  |$\quad$.


| Question Number | Acceptab | ble Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 5 (c) | Choose an item. <br> This question assesses a stu coherent and logically struct linkages and fully-sustained Marks are awarded for indic how the answer is structure reasoning. <br> The following table shows h be awarded for indicative co <br> The following table shows h be awarded for structure and <br> Answer shows a coherent and logical structure with | udent's ability to show a ctured answer with d reasoning. cative content and for ed and shows lines of <br> how the marks should ontent. <br> Number of marks awarded for indicative marking points <br> how the marks should nd lines of reasoning. <br> Number of marks awarded for structure and sustained lines of reasoning | Guidance on how the mark scheme should be applied: <br> The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning, scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). <br> If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). <br> In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning. | (6) |





| Question Number | Acceptable Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 6 (b) | An explanation that makes reference to the following points: <br> - silicon(IV) oxide/ silicon dioxide (is a giant structure therefore) contains many (strong covalent) bonds <br> - iodine - (only) weak intermolecular / London forces/bonds must be broken <br> - more energy is required to break the stronger bonds in silicon(IV) oxide/ silicon dioxide (hence higher melting temperature) | (1) | Allow silicon oxide <br> Do not award covalent bonds are broken Accept dispersion force / instantaneous dipole-induced dipole / van der Waals <br> Allow reverse argument M3 can be awarded even if M2 is incorrect | (3) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |  |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{6}$ (c) | An explanation that makes reference to the <br> following points: <br> - molten/liquid potassium chloride conducts <br> because it contains ions that can move (so <br> they carry charge) | (1) | (3) |  |
| - (in solid and molten state iron conducts) <br> because it contains delocalised electrons <br> (that move and carry charge) | (1) | (1) |  |  |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{7 ~ ( a )}$ | The only correct answer is $\mathbf{D}$ (Be, Rb, Ba and Ra) | (1) |
|  | $\mathbf{A}$ is not correct because chlorine is in Group 7 therefore it is a p block element |  |
| $\mathbf{B}$ is not correct because cobalt is a transition element therefore it is a d block element |  |  |
|  | $\mathbf{C}$ is not correct because aluminium is a Group 3 element therefore it is a p block element |  |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{7 ( b )}$ | The only correct answer is B (solubility of sulfates decreases and solubility of <br> hydroxides increases down group 2) <br> A is not correct because the solubility of Group 2 sulfates deceases down the group <br> C is not correct because the solubility of Group 2 hydroxides increases down the group <br> D is not correct because the solubility of Group 2 sulfates decreases down the group and the <br> solubility of Group 2 hydroxides increases down the group | (1) |


| Question Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 7 (c)(i) | - dot-and-cross diagram | Allow diagrams with all dots/all crosses etc Allow lone pairs with electrons separated Ignore covalent bonds (if shown) 'extra' electron may be shown as different shape, colour etc. The double bond can be to any of the three oxygens | (1) |


| Question Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 7 (c)(ii) | An answer that makes reference to the following points: <br> - balanced equation | Example of equation $2 \mathrm{LiNO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$ <br> Allow multiples of equation Ignore state symbols even if incorrect | (1) |


| Question Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 7 (c)(iii) | An answer that makes reference to the following points: <br> - calculation of moles of sodium nitrate <br> - calculation of moles of oxygen <br> - substitution in $p V=n R T$ and rearrangement <br> - final answer to 2SF only and in $\mathrm{cm}^{3}$ | Example of calculation <br> Ignore SF for M1, M2, M3 except 1SF, penalise once only <br> Moles of sodium nitrate $=0.5 \div 85$ $=5.8824 \times 10^{-3}(\mathrm{~mol})$ <br> Moles of oxygen gas $\mathrm{O}_{2}=5.8824 \times 10^{-3} \div 2$ $=2.9412 \times 10^{-3}(\mathrm{~mol})$ $\begin{aligned} & p V=n R T \\ & V=\frac{n R T}{p}=\frac{2.9412 \times 10^{-3} \times 8.31 \times 298}{101000} \\ & \left(=7.21136 \times 10^{-5} \mathrm{~m}^{3}\right) \\ & =72\left(\mathrm{~cm}^{3}\right) \end{aligned}$ <br> If M 2 not divided by 2 then final answer = $140 \mathrm{~cm}^{3}$ - scores (3) marks. <br> $144 \mathrm{~cm}^{3}$ - scores (2) marks. <br> Correct final answer with no working scores <br> (4) <br> Allow TE throughout | (4) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :--- | :---: |
| $\mathbf{7 ( c ) ( i v ) ~}$ | • incomplete reaction / decomposition | Ignore pressure not 101 kPa <br> or <br> temperature not 298 K <br> Do not award reversible reaction / <br> impure reactant or product / <br> oxygen soluble in water / side <br> reactions | (1) |


| Question Number | Acceptable Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 7 (d) | An answer that makes reference to the following points: <br> - Group 2 ions have larger charge (than Group 1 ions) <br> Or <br> Group 2 ions have a $2+$ charge and Group 1 ions have a $1+$ charge <br> - Group 2 ions polarise bonds in the carbonate ion more (effectively) <br> - the $\mathrm{C}-\mathrm{O} / \mathrm{C}=\mathrm{O}$ bond is weakened | (1) <br> (1) <br> (1) | Allow the charge density of Group 2 ions is larger (than Group 1 ions) Allow reversed argument for Group 1 ions Ignore reference to size <br> Allow distort / polarise | (3) |


| Question Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 8 (a) | - calculation of total of moles of gas in product <br> - calculation using Avogadro number to find number of molecules | Example of calculation $\begin{align*} & \text { Moles of } \mathrm{HCl}=40 \div 24000 \\ & \quad=1.6667 \times 10^{-3} / 0.0016667 \\ & 1.6667 \times 10^{-3} \times 6.02 \times 10^{23}  \tag{1}\\ & =1.0033 \times 10^{21} \end{align*}$ <br> For MP2, allow TE on moles of HCl Ignore SF <br> Penalise rounding errors once only | (2) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :--- | :--- | :---: |
| 8(b)(i) | An answer that makes reference to the following <br> points: <br> • the covalent bond in hydrogen chloride changes tc <br> an ionic bond in aqueous solution | Both types of bond required <br> Accept covalent bond breaks, ions are <br> formed <br> Accept <br> $\mathrm{HCl}(\mathrm{g}) \rightarrow \quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ <br> or <br> $\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ | (1) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 8(b)(ii) | - correct species on each side of equation <br> - correct states for all species | Example of equation: $\begin{array}{\|r\|} \mathrm{HCl}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g})  \tag{1}\\ \mathrm{NH}_{4}{ }^{+} \mathrm{Cl}^{-}(\mathrm{s}) / \mathrm{NH}_{4}{ }^{+}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{s}) \end{array}$ <br> Allow (aq) or (g) for reactants Do not award (liquid) for either reactant Two products will lose both marks | (2) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :--- | :--- | :---: |
| 8(b)(iii) | An answer that makes reference <br> to the following points: <br> - first observation | (1) | Allow observations in any order <br> Sodium carbonate/ $\mathrm{Na}_{2} \mathrm{CO}_{3} /($ white solid <br> dissolves/disappears/forms a colourless <br> solution |
|  | - second observation | (1) | Effervescence/fizzing/bubbles <br> Ignore gas/carbon dioxide given off <br> Do not award if any named gas other <br> than carbon dioxide, eg hydrogen or <br> oxygen |


| Question Number | Acceptable Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 8 (b)(iv) | A description that makes reference to the following points: <br> - remove a fixed amount of one solution using a pipette into a conical flask and fill up the burette with other solution <br> - add a named indicator and colour change <br> - add solution from burette to flask until indicator changes colour <br> - technique mark <br> - repeat titrations (until concordant results obtained) | (1) <br> (1) <br> (1) <br> (1) <br> (1) | Allow use of any suitable flask in place of conical flask. <br> Allow any recognised acid/base indicator: methyl red / orange, phenolphthalein etc. Ignore litmus /UI. Do not award reversed colour change <br> Do not penalise reverse colour change again here. <br> Any one from: Rinsing burette/pipette with appropriate solution, use of white tile, adding slowly, swirling flask etc. <br> Ignore mention of 'rough' or 'trial' runs etc | (5) |


| Question <br> Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :--- | :--- | :---: |
| $\mathbf{8 ( c ) ( \mathbf { i } )}$ | - half-equation | Example of half-equation <br> $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$ <br> Allow multiples <br> Allow $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}$ <br> lgnore state symbols even if incorrect <br> DNA reverse equation | (1) |


| Question Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 8 (c)(ii) | An answer that makes reference to the following points: <br> - calculation of moles of HCl <br> - calculation of theoretical moles of $\mathrm{Cl}_{2}$ produced <br> - calculation of theoretical volume of $\mathrm{Cl}_{2}$ <br> - calculation of $\%$ yield <br> and comparison with expected yield | Example of calculation $\begin{aligned} & (5.0 \times 5.0) \div 1000=0.025 / 2.5 \times 10^{-2}(\mathrm{~mol}) \\ & 0.025 \div 4=0.00625 / 6.25 \times 10^{-3}(\mathrm{~mol}) \\ & 0.00625 \times 24000=150\left(\mathrm{~cm}^{3}\right) \\ & \% \text { yield }=(70 \div 150) \times 100 \\ & =46.7 / 47(\%) \\ & \text { and } \\ & \text { less than expected } / \text { did not achieve } \\ & \text { expected yield } / \text { expected yield is } 75 \% \text { of } 150 \\ & =112.5 \mathrm{~cm}^{3} \end{aligned}$ <br> Allow calculation of actual moles of $\mathrm{Cl}_{2}$ for MP3, then calculation of yield based on moles for MP4: $70 \div 24000=2.9167 \times 10^{-3}(\mathrm{~mol})$ $\left(2.9167 \times 10^{-3} \div 0.00625\right) \times 100=46.7 / 47(\%)$ <br> Ignore SF except 1 <br> Allow TE at each stage | (4) |


| Question Number | Acceptable Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 8 (d)(i) | An answer that makes reference to the following points <br> - recognises/states that disproportionation reactions contain one element that is both reduced and oxidised <br> - identifies the relevant oxidation number changes in chlorine | (1) (1) | Allow answers in terms of just Chlorine i.e. Chlorine is both oxidised and reduced <br> Do not award: Chlorine molecule both oxidised and reduced <br> Cl changes from 0 in $\mathrm{Cl}_{2}$ to -1 in NaCl and <br> 0 in $\mathrm{Cl}_{2}$ to +5 in $\mathrm{NaClO}_{3}$ <br> Allow oxidation numbers shown on equation | (2) |


| Question Number | Acceptable Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 8 (d)(ii) | An answer that makes reference to the following points <br> - all molar masses correct <br> - correct use of multiples <br> - calculation of atom economy | (1) <br> (1) <br> (1) | Example of calculation $\begin{aligned} & \mathrm{NaClO}_{3}=106.5 \\ & \mathrm{NaCl}=58.5 \\ & \mathrm{H}_{2} \mathrm{O}=18 \end{aligned}$ <br> Allow calculation of molar masses of left-hand side $\mathrm{Cl}_{2}=71, \mathrm{NaOH}=40$ $(5 \times 58.5 \text { and } 1 \times 106.5 \text { and } 3 \times 18 \text { ) }$ <br> or $(3 \times 71 \text { and } 6 \times 40)$ <br> M1 and M2 may be combined: total molar mass $=453$ $\begin{aligned} & =106.5 \times 100 \div((5 \times 58.5)+106.5+(3 \times 18)) \\ & =23.51 \% \end{aligned}$ <br> Ignore SF except 1 SF <br> TE on molar masses and multiples | (3) |

(Total for Question 8 = 22 marks)

| Question Number | Acceptable Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 9 (a) | An answer that makes reference to the following points: <br> - calculation of mass of carbon required <br> - calculation of total mass of reactants and mass of reactants = mass of products <br> OR <br> - mathematical expression of total mass of reactants/products <br> - evaluation | (1) <br> (1) <br> (1) <br> (1) | Example of calculations <br> Moles of water $=$ moles of carbon <br> Moles of carbon $=1000000 \div 18=$ $55556 / 5.5556 \times 10^{4}$ <br> Mass of carbon $=55556 \times 12 \div 10^{3}$ $=672 \text { / } 666.67 \text { (kg) }$ <br> Answer depends on no of SF used for moles of carbon. Check. $\left.\begin{array}{l} \text { Mass of reactants }=\text { mass of products } \\ \\ \\ =1000+666.72 \\ \\ =1666.7(\mathrm{~kg}) \end{array}\right\} \begin{aligned} & 1000\left(\frac{18+12)}{18} \text { or } \begin{array}{l} 1000 \frac{(28+2)}{18} \\ 1666.7(\mathrm{~kg}) \end{array}\right. \\ & \text { Ignore SF except } 1 \mathrm{SF} \\ & \text { Allow TE throughout } \end{aligned}$ <br> Correct answer with no working scores (2) | (2) |


| Question Number | Acceptable Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 9 (b) | An answer that makes reference to the following points: <br> - limewater turns cloudy <br> - identifies carbon dioxide <br> - anhydrous copper(II) sulfate turns (from white to) blue <br> - identifies water <br> - the U tube should be placed before the boiling tube | Distinguishes water as product of combustion from water originating from the limewater | (5) |

## (Total for Question $9=7$ marks)

Total for Paper = 80 marks

