Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE

In Chemistry (9CH0)
Paper 01 Advanced Inorganic and Physical
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P67903
Publications Code 9CHO_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer		Additional Guidance			Mark
1(a)	- any two or three values correct - all four values correct		Example of table			(2)
			Particle	Relative charge	Relative mass	
			proton	(+1)	(1)	
			neutron	0 / no charge	1	
			electron	-1	1/1840	
			Allow negligible / very small or words to that effect / values in a range from $1 / 1800$ to $1 / 2000(0.0005)$ for the relative mass of electron			
			Do not award Ignore + sign for	ne for mass of e utron	ron	

Question number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is D (quantum shells)	(1)
	$\boldsymbol{A} \quad$ is incorrect because atomic emission spectroscopy does not provide evidence for the existence of atoms	
B is incorrect because atomic emission spectroscopy does not provide evidence for the existence of electrons		
C is incorrect because evidence for isotopes is provided by mass spectrometry		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (c)}$	• diagram of a p orbital	Example of diagram Allow any orientation of p orbital Ignore axes	(1)

Question Number	Answer	Additional Guidance	Mark
1(d)	An explanation that makes reference to the following points: - silicon - giant atomic / giant covalent / giant molecular / macromolecular and contains covalent bonds - chlorine - (simple) molecular / molecules / diatomic / Cl_{2} and contains London forces - (covalent) bonds in silicon are stronger than London forces/ intermolecular forces in chlorine or covalent bonds take more energy to break than London forces / intermolecular forces (1)	Do not allow just 'silicon is a covalent molecule' Do not allow reference to ions or metallic bonding Allow dispersion forces / van der Waals' / attractions between temporary dipole and induced dipole/ attractions between instantaneous dipole (- induced dipole) for London forces Do not award covalent bonds being broken in chlorine Ignore silicone for silicon as correct spelling is given in the paper	(3)

Question Number	Answer	Additional Guidance	Mark
2(a)	An answer that makes reference to the following points: - (the Universal Indicator changes from green) to blue / purple - water level in the test tube drops or gas collects at the top of the test tube	Allow to dark blue/ blue-green or green-blue Do not award from blue Do not award if the solution is described as 'acidic' or [H^{+}] increases Do not award any other starting colour Allow water level in the beaker rises Allow hydrogen / H_{2} for gas Do not award named incorrect gases (e.g. oxygen/air) Do not award magnesium oxide Do not award magnesium is a white powder Ignore magnesium disappears/dissolves	(2)

Question Number	Answer	Additional Guidance	Mark
2(b)	An explanation that makes reference to the following points: - the outer/valence electron is / the outer electrons are/ further from the nucleus - there is more shielding (from shells of inner electrons) or there is an increase in repulsion between the filled inner shells and the electron removed - so the (first) ionisation energy decreases (down the group) and so the reactivity increases	Allow the outer (s) electron is in a higher (quantum) shell / higher energy level Ignore the atomic / ionic radius increases Allow there is reduced attraction between the nucleus and the outer electrons Do not award any reference to charge or charge density for M2 Allow the outer (s) electron(s) are removed more easily / it takes less energy to remove the (outer) electrons and so the reactivity increase	(3)

Question Number	Answer	Additional Guidance	Mark
2(c)	An explanation that makes reference to the following points: - calcium is oxidised as it loses electrons - Chlorine $/ \mathrm{Cl}_{2} / \mathrm{Cl}$ is reduced as it gains electron(s)	Allow $\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{e}^{-} / \mathrm{Ca}-2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}^{2+}$ and oxidation Do not allow calcium loses 1 electron Allow $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$and reduction	(2)

Question Number	Answer	Additional Guidance	Mark
2(d)	- calculation of mol of magnesium - calculation of molar volume of H_{2} and units	Example of calculation $\begin{aligned} \mathrm{mol} \mathrm{Mg} & =0.035 \div 24.3 \\ & =1.4403 \times 10^{-3} / 0.0014403(\mathrm{~mol}) \end{aligned}$ $\left(\mathrm{mol} \mathrm{H}_{2}=\mathrm{mol} \mathrm{Mg}\right)$ molar volume of $\mathrm{H}_{2}=32 \div 1.4403 \times 10^{-3}$ $=22217 / 22220 / 22200 / 22000 / 2.2217 \times 10^{4} / 2.220 \times 10^{4} /$ $2.22 \times 10^{4} / 2.2 \times 10^{4}$ and $\mathrm{cm}^{3}\left(\mathrm{~mol}^{-1} / \mathrm{mol}^{-}\right)$ Allow value converted to dm^{3} e.g. 22.2 and $\mathrm{dm}^{3}\left(\mathrm{~mol}^{-1} / \mathrm{mol}^{-}\right)$ If they have rounded to 1.4×10^{-3} in step 1 then an example of a correct answer would be 22857 and $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ or 23 and $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$ TE on mol Mg Additional guidance Allow 1.4583×10^{-3} and 2.1942×10^{4} if 24 used for Mg Correct answer with no working scores (2) Ignore SF except 1 SF	(2)

Question number	Answer	Mark
$\mathbf{3 (a)}$	The only correct answer is D (grey/black solid, purple gas)	(1)
	$\boldsymbol{A} \quad$ is incorrect because iodine solid is not purple and iodine gas is not brown	
$\boldsymbol{B} \quad$ is incorrect because iodine solid is not purple		
$\boldsymbol{C} \quad$ is incorrect because iodine gas is not brown		

Question number	Answer	Mark
$\mathbf{3 (b)}$	The only correct answer is $\mathbf{C} \quad\left(\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{NaBr}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because bromine is less reactive than chlorine so no reaction occurs	
$\boldsymbol{B} \quad$ is incorrect because bromine is less reactive than fluorine so no reaction occurs		
$\boldsymbol{D} \quad$ is incorrect because chlorine is less reactive than fluorine so no reaction occurs		

Question Number	Answer	Additional Guidance	Mark
3(c)	- electronic configuration of chloride ion	$\frac{\text { Example of electronic configuration }}{\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}}$ Allow $2 p^{6} / 3 p^{6}$ shown as e.g. $2 p_{x}^{2} 2 p_{y}{ }^{2} 2 p_{z}^{2}$ lgnore $1 s^{2}$ repeated lgnore working Do not award correct answer if one or more incorrect answers are given	(1)

Question Number	Answer	Additional Guidance	Mark
3(d)(i)	An explanation that makes reference to the following points: - balanced equation - calculation of E^{9} cell value - E^{0} cell / answer is negative / <0 and the reaction is not (thermodynamically) feasible	Example of equation $\mathrm{Br}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HOBr}(\mathrm{aq})+\mathrm{HBr}(\mathrm{aq})$ Allow multiples Allow $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$ for $\mathrm{HBr}(\mathrm{aq})$ Allow reversible arrows Ignore state symbols even if incorrect $E_{\text {cell }}^{\ominus}=1.09-1.57=-0.48(\mathrm{~V})$ Allow correct answer without calculation Allow 3 marks for reverse argument $\mathrm{HOBr}(\mathrm{aq})+\mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ $E_{\text {cell }}^{\ominus}=1.57-1.09=(+) 0.48(\mathrm{~V})$ E^{\ominus} cell is positive / >0 so the reverse of disproportionation is (thermodynamically) feasible	(3)

Question Number	Answer	Additional Guidance	Mark
3(d)(ii)	An answer that makes reference to the following point: • disproportionation is an equilibrium system (and although K is very small, there is still a small concentration of disproportionation products) or excess water is used or concentration is not 1 mol dm or HOBr undergoes further disproportionation	Ignore just 'non-standard conditions' Ignore references to activation energy / collision theory Ignore $\mathrm{H}^{+} /$ions from the water	

Question number	Answer	Mark
$\mathbf{3 (e) (i)}$	The only correct answer is C (graph C) $\boldsymbol{A} \quad$ is incorrect because HF has a much higher boiling temperature than expected due to hydrogen bonding $\boldsymbol{B} \quad$ is incorrect because these is an increase in boiling temperature from HCl to HI as the number of electrons in the molecules increases so the London forces increase in strength \boldsymbol{D} is incorrect because HBr has a higher boiling temperature than HCl as there are more electrons in the molecules	(1)

Question number	Answer	Mark
3(e)(ii)	The only correct answer is A (acid-base)	(1)
	$\boldsymbol{B} \quad$ is incorrect there is no displacement taking place	
$\boldsymbol{C} \quad$ is incorrect because neither substance is oxidised or reduced		
$\boldsymbol{D} \quad$ is incorrect because there is no substitution taking place		

(Total for Question 3 = 9 marks)

Question number	Answer	Mark
$\mathbf{4 (a)}$	The only correct answer is A (anions and cations)	(1)
	$\boldsymbol{B} \quad$ is incorrect because ionic bonding involves positive ions and negative ions	
$\boldsymbol{C} \quad$ is incorrect because there are no delocalised electrons in ionic bonding		
$\boldsymbol{D} \quad$ is incorrect because this is a description of covalent bonding		

Question Number	Answer	Additional Guidance	Mark	
4(b)	• region E: yellow	(1)	lgnore additional descriptions of colours e.g. pale, bright	(2)
	• region F: blue	(1)	Do not award any other colours e.g. blue-green	

Question Number	Answer	Additional Guidance	Mark
4(c)	MgCl_{2}	Ignore names Do not award MgCl	(1)

Question number	Answer	Mark
4(d)(i)	The only correct answer is D (Substance S)	(1)
	$\boldsymbol{A} \quad$ is incorrect because copper exists as a giant metallic lattice	
$\boldsymbol{B} \quad$ is incorrect because iodine exists as a simple molecular lattice		
$\boldsymbol{C} \quad$ is incorrect because silicon(IV) oxide exists as a giant covalent lattice		

Question number	Answer	Mark
4(d)(ii)	The only correct answer is A (Substance P)	(1)
	$\boldsymbol{B} \quad$ is incorrect because iodine has a low melting temperature and does not conduct electricity $\boldsymbol{C} \quad$ is incorrect because silicon(IV) oxide does not conduct electricity $\boldsymbol{D} \quad$ is incorrect because sodium chloride does not conduct electricity when solid	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(e)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

	Number of marks awarded for structure of answer and sustained line of reasoning	
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2	In general it would be expected that 5 or 6 indicative points would get 2 reasoning
Answer is partially structured with some linkages and lines of reasoning.	1	marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for
Answer has no linkages between points and is unstructured.	0	reasoning.
Comment: Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning		General points to note If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Example of incorrect chemistry Reference to ionic bonding/ions Ignore reference to intermolecular forces other than London forces in $\mathrm{H}_{2} \mathrm{~S}$

Indicative content

- IP1 - lone pair and dipole
lone pair on oxygen in hydrogen bond and dipole shown with $\delta+$ on any one H and δ - on any one O
- IP2 - shape
hydrogen bond labelled / or shown as a dotted line and hydrogen bond(s) shown as approximately linear or O-H-O bond angle labelled 180°
- IP3 - London forces
hydrogen sulfide has stronger London forces/ dispersion forces / van der Waals' forces (because it has more electrons)
- IP4 - comparison
hydrogen bonding is stronger than London forces / is the strongest intermolecular force / requires more energy to break/ requires more energy to overcome
- IP5 - ice at $0^{\circ} \mathrm{C}$
(water molecules are arranged) in a lattice / hexagon or hydrogen bonds are longer than covalent bonds
- IP6 - water at $0^{\circ} \mathrm{C}$
(water) molecules get closer / have less distance between them / more molecules in the same volume

Example of diagram

Comment: allow bond angles drawn between 170° and 190° if labelled 180° If multiple hydrogen bonds are drawn the majority must be within this tolerance

Allow / attractions between temporary dipoles and induced dipoles / instantaneous dipole - induced dipole for London forces

Do not award breaking of covalent bonds Allow hydrogen bonds take a lot of energy to break as long as hydrogen bonds are only mentioned as being present in the water

Allow this shown in a diagram
Allow rings (of 6 for hexagonal)
Allow there are spaces / air / gaps in the structure

Allow (water) molecules fill the spaces/gaps Allow reverse argument

Question Number	Answer	Additional Guidance	Mark
5(a)	An answer that makes reference to the following point:	(1)	
- (the system / it) is not at constant pressure or enthalpy change is the heat change at a constant pressure	Allow a gas / carbon dioxide is produced and this increases the pressure Allow the pressure is increased / increases lgnore reference to temperature		

Question Number	Answer	Additional Guidance	Mark
5(b)	An answer that makes reference to the following points: - (the enthalpy/energy change when) 1 mol of aluminium oxide - is formed from its elements in their standard states - at 100 kPa and a ‘specified’ / ‘stated' temperature	Allow $2 \mathrm{Al}(\mathrm{s})+11 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ for M 1 and M 2 If state symbols are missing or incorrect only M1 can be awarded Allow M2 for multiples in equation provided state symbols for the elements are correct Allow 1 atm / $1 \times 10^{5} \mathrm{~Pa} / 101 \mathrm{kPa} / 1.01 \times 10^{5} \mathrm{~Pa}$ for pressure Allow a value for the temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ Ignore 273K Ignore other standard conditions e.g. $1 \mathrm{~mol} \mathrm{dm}^{-3}$ Do not allow ${ }^{\circ} \mathrm{K}$	(3)

Question Number	Answer	Additional Guidance	Mark	
5(c)(i)	An answer that makes reference to the following points: (ionic) radius	Allow size (of ions) Do not award atomic radius/size of atoms		
	• (ionic) charge	(1)	Do not award atomic charge/charge of atoms Allow charge density for 1 mark if no other mark awarded	

Question Number	Answer	Additional Guidance	Mark
5(c)(ii)	- correct species with state symbols in bottom box - arrows in correct directions and labelled - calculation of enthalpy change of hydration of Cl^{-}ions	Ignore missing aq Allow any clear labels for arrows, including values for lattice energy and $\Delta_{\text {hyd }} H \mathrm{~K}^{+}, \mathrm{e}, \mathrm{g}, \mathrm{LE}, \mathrm{HE}$ Allow arrow on left reversed if labelled - lattice energy/+711 Allow two separate arrows on the RHS Standalone mark $\begin{aligned} \Delta_{\mathrm{hyd}} \mathrm{HCl}^{-} & =-711+17.2-(-322) \\ & =-371.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ No TE on incorrect arrows Ignore SF apart from 1SF	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (a)}$	An answer that makes reference to the following point: \bullet (a Brønsted-Lowry base is a) proton acceptor	Allow accepts protons $/ \mathrm{H}^{+}$(ions) $/$hydrogen ions Do not award additional references to reacting with $\mathrm{OH}^{-} /$alkali	(1)

Question Number	Answer	Additional Guidance	Mark
6(b)	- balanced equation (1) - state symbols	Example of equation $\mathrm{MgO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ Allow multiples Conditional on M1 or near miss e.g. Mg^{+} Allow a fully balanced equation with correct state symbols for 1 mark e.g. $\mathrm{MgO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ e.g. $\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ e.g. uncancelled spectator ions from the acid with (aq) Do not award M1 for $\mathrm{Mg}^{2+}(\mathrm{s})+\mathrm{O}^{2-}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ But M2 can be awarded for correct state symbols	(2)

Question Number	Answer	Additional Guidance	Mark
6(c)	- calculation of $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$	Example of calculation $\begin{aligned} & {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}=10^{-9.43}} \\ & =3.7154 \times 10^{-10} / 3.715 \times 10^{-10} / 3.72 \times \\ & 10^{-10} / \\ & 3.7 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ Do not award 3.71×10^{-10} Ignore units even if incorrect Ignore SF except 1 SF Correct answer with no working scores (1)	(1)

Question number	Answer	Mark
6(d)	The only correct answer is \mathbf{A} (solution $\mathrm{J}: \mathrm{HCl}(\mathrm{aq})$ and $\mathrm{NH}_{3}(\mathrm{aq})$, solution $\mathbf{K}: \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$) B is incorrect because the salt formed from a strong acid (HCl) and a strong base (NaOH) will have pH 7 while that formed from a weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and a weak base $\left(\mathrm{NH}_{3}\right)$ will have pH close to 7 \boldsymbol{C} is incorrect because the salt formed from a weak acid and a strong base will have a pH of about 9 while that formed from a strong acid and a strong base will have pH 7 D is incorrect because the salt formed from a weak acid and a weak base will have a pH of about 7 while that formed from a strong acid and a weak base will have pH of about 5	(1)

Question Number	Answer	Additional Guidance	Mark
6(e)(ii)	- deduction of expression relating K_{w} and $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ - calculation of $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ - calculation of pH	$\begin{aligned} & \text { Example of calculation } \\ & \left(K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]\right. \\ & \text { but } \left.\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \mathrm{so}\right) \\ & K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2} \\ & \\ & \\ & {\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}=1.47 \times 10^{-14}} \\ & {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\sqrt{ } 1.47 \times 10^{-14}} \\ & \left(\mathrm{so}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1.2124 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right) \\ & \\ & \mathrm{pH}=-\log 1.2124 \times 10^{-7} \\ & \quad=6.9163 / 6.916 / 6.92 / 6.9 \end{aligned}$ Do not award 1SF or final answer of 7 or answer incorrectly rounded to 6.91 pH TE on $\left[\mathrm{H}^{+}\right]$ Correct answer with no working scores (3) Allow alternative methods	(3)

Question Number	Answer	Additional Guidance	Mark
6(f)(i)	- phenolphthalein - pH at equivalence point / 9 is very close / ± 1 to $\mathrm{p} K_{\text {in }} / 9.3$ or pH range is (completely) within the (first) vertical jump in the titration curve / between the range of $(\mathrm{pH}) 8.5-\mathrm{pH} 9.5$	Allow recognisable spellings Allow indicator will change colour in the vertical section of the curve / at the end / equivalence point Accept correct reference to the pH range for phenolphthalein from the data book (8.2-10.0) if there is a connection to the graph Do not allow colourless to pink/red if the colour change of phenolphthalein is mentioned	(2)

Question Number	Answer	Additional Guidance	Mark
6(f)(ii)	- equation	Example of equation $\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ or $\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Allow $\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{CO}_{3}$ Allow multiples Ignore state symbols even if incorrect	(1)

Question Number	Answer	Additional Guidance	Mark
6(f)(iii)	- (solution at \mathbf{X}) contains a large amount of / reservoir of carbonate ions $/ \mathrm{CO}_{3}{ }^{2-}$ and hydrogencarbonate ions/ $\mathrm{HCO}_{3}{ }^{-}$ - carbonate ions / $\mathrm{CO}_{3}{ }^{2-}$ react with added hydrogen ions / H^{+}/ acid or $\begin{equation*} \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}^{-} \tag{1} \end{equation*}$ - hydrogencarbonate ions / $\mathrm{HCO}_{3}{ }^{-}$ react with added hydroxide ions / OH^{-}/ alkali or $\begin{equation*} \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$	Allow there is a large amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} Allow solution at X contains a reservoir of an acid and its conjugate base Allow $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with added hydrogen ions $/ \mathrm{H}^{+} /$acid to form NaHCO_{3} or $\mathrm{CO}_{3}^{2-}+\mathrm{HCl} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{Cl}^{-}$ or $\mathrm{A}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HA}$ Allow NaHCO_{3} reacts with added hydroxide ions (to form $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$) Allow hydroxide ions react with hydrogen ions to form water and hydrogencarbonate ions dissociate to replace / form hydrogen ions or $\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}$ or $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$ Allow \rightleftharpoons in equations Ignore state symbols	(3)

Question Number	Answer	Additional Guidance	Mark
7(a)	An answer that makes reference to the following point: - there is only a gradual / steady increase in (successive ionisation energies)	Allow they / the (successive) ionisation energies are close in value / similar Allow the extra ionisation energy to increase oxidation state is similar to the increase in hydration enthalpy / lattice energy Ignore chromium is a transition element Ignore 3d (and 4s) orbitals have similar energy Ignore Cr is $[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$ so can lose 6 electrons Ignore reference to electrons being removed from the d-orbital	(1)

Question Number	Answer	Additional Guidance	Mark
7(b)	- 2 double bonds and 2 single bonds shown as dots and crosses - Another 4 electrons around each oxygen involved in the double bond and another 6 electrons around each oxygen involved in the single bond with one different symbol on each of two oxygens to indicate the extra electrons in the ion Or - 2 single bonds shown as dots and crosses 2 dative bonds with the electrons being donated from the chromium - another 6 electrons around each oxygen with one different symbol on two of the oxygens to indicate the extra electrons	Examples of diagrams Penalise extra electrons on chromium In both examples, M2 is conditional on M1 Allow overlapping circles with electrons in correct places Ignore missing brackets and charge / shape Ignore lines representing covalent bonds	(2)

Question Number	Answer	Additional Guidance	Mark
7(c)(ii)	- calculation of E^{θ} cell	Example of calculation $\begin{aligned} & \left(E^{\ominus} \text { cell }=1.33-(-0.76)\right) \\ & =(+) 2.09(\mathrm{~V}) \end{aligned}$ Allow - 2.09 (V) if equation written in reverse in (c) (i) Correct answer with no working scores (1)	(1)

Question Number	Answer	Additional Guidance	Mark
7(c)(iii)	yes/zinc and acid will reduce chromium(III) ions to chromium(II) ions and because E^{\ominus} cell for the reaction between Zn and Cr^{3+} is (+) 0.35 (V) or $\mathrm{Zn}^{2+} / \mathrm{Zn}$ electrode potential / SEP / E^{\ominus} value is more negative / less positive / lower than the $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$ value or $\mathrm{Zn} / \mathrm{Zn}^{2+}$ electrode potential / SEP / E^{\ominus} value is less negative / more positive / higher than the $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$	Allow positive or >0 if not calculated Allow explanations in terms of the anticlockwise rule	(1)

Question Number	Answer	Additional Guidance	Mark
7(c)(iv)	An explanation that makes reference to the following points: - the energy difference between the two sets of d orbitals is different in the two ions / Cr^{3+} and Cr^{2+} or there is different splitting of the d orbitals / d subshell - electrons undergo different d-d transitions/ are promoted to a higher d-orbital absorbing/requiring a different amount of energy or a different amount of energy is absorbed the frequency / wavelength/colour of (visible) light absorbed is different (1)	Allow the d orbital energies are different Allow different charges / oxidation numbers alter the d orbital energies differently Do not award reference to a single d orbital splitting/ d orbital splitting Ignore references to charges/charge density/oxidation numbers/electron configurations of the ions Do not award references to electrons being excited and falling back to the ground state (or words to that effect) Allow the frequency / wavelength of (visible) light transmitted / reflected is different Do not award emitted instead of absorbed Ignore reference to different ligands	(2)

Question Number	Answer	Additional Guidance	Mark
7(d)	- calculation of mol of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ - calculation of $\mathrm{mol} \mathrm{Fe}^{2+}$ in $25.0 \mathrm{~cm}^{3}$ - calculation of $\mathrm{mol} \mathrm{Fe}^{2+}$ in $1.00 \mathrm{dm}^{3}$ (1) - calculation of mass of Fe in 1 nail (1) - calculation of percentage of iron and brand of nail	Example of calculation $\mathrm{mol} \mathrm{Fe}{ }^{2+}$ in $25.0 \mathrm{~cm}^{3}=6 \times 2.5885 \times 10^{-4}$ $\begin{equation*} =1.5531 \times 10^{-3}=0.0015531(\mathrm{~mol}) \tag{1} \end{equation*}$ mol Fe ${ }^{2+}$ in $1.00 \mathrm{dm}^{3}=\left(1.5531 \times 10^{-3} \times 1000\right) / 25$ $=6.2124 \times 10^{-2} / 0.062124(\mathrm{~mol})$ mass of $\mathrm{Fe}=6.2124 \times 10^{-2} \times 55.8=3.4665(\mathrm{~g})$ Allow $3.4789(\mathrm{~g})$ from A_{r} of 56 Percentage of iron $=(3.4665 / 3.54) \times 100(=97.924)=98 / 97.9(\%)$ Allow 98 / 98.3 from A_{r} of 56 and Brand D Do not award for a percentage of 84% or below Ignore SF except 1 SF Correct answer with some relevant working scores 5 Correct percentage (98\%) and brand (D) with no working scores (1) Any other percentage and brand with no working scores (0)	(5)

(Total for Question 7 = 14 marks)

Question Number	Answer	Additional Guidance	Mark
8(a)	- substitution of values into the equation - calculation of K_{c} (1)	Example of calculation $\begin{align*} & \operatorname{In} K_{\mathrm{C}}=\frac{5 \times 0.15 \times 96500}{8.31 \times 298} \tag{1}\\ & \left(\ln K_{\mathrm{C}}=29.226\right) \\ & K_{\mathrm{C}}=4.9289 \times 10^{12} \\ & \quad=4.9 \times 10^{12} / 4.93 \times 10^{12} \end{align*}$ TE on their value for $\ln K_{c}$ Ignore SF except 1SF Correct answer with no working scores (2)	(2)

Question number	Answer	Mark
$\mathbf{8 (b)}$	The only correct answer is $\mathbf{A} \quad\left(4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)$	(1)
	$\boldsymbol{B} \quad$ is incorrect because methanol does not react with hydrogen	
$\boldsymbol{C} \quad$ is incorrect because this reaction shows an oxidation		
$\boldsymbol{D} \quad$ is incorrect because this reaction shows an oxidation		

Question Number	Answer		Additional Guidance	Mark
8(c)	- one half-equation - other half-equation - state symbols	(1) (1) (1)	Examples of half-equations $\mathrm{Pb}(\mathrm{~s})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{e}^{-}$ Allow $\mathrm{Pb}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$ $\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Allow $\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ Allow multiples Allow single headed arrows in the forward direction Ignore missing charge on electrons Conditional on correct species in one equation that has scored either M1or M2	(3)

Question Number	Answer	Additional Guidance	Mark
8(d)	- calculation of initial moll^{-} - calculation of eqm mol^{-} - calculation of mol^{-}reacted(1) - calculation of eqm mol-1 $\mathrm{SO}_{4}{ }^{2-}$ - calculation of eqm $\left[\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})\right]$ and calculation of eqm $\left[1^{-}(\mathrm{aq})\right]$ - calculation of K_{c} and answer to 2 / 3 SF - units	Example of calculation $\begin{align*} & \text { initial mol I- } \begin{aligned} \text { eqm mol I- } \left.\left(=\mathrm{mol} \mathrm{Ag}^{+}\right)=(12.0 \times 0.100) \div 1000\right) & =2.5 \times 10^{-3} / 0.0025(\mathrm{~mol}) \\ & =6.1 \times 10^{-4} / 0.00061(\mathrm{~mol}) \end{aligned} \\ & =0500 \div 1000 \tag{1}\\ & \end{align*}$ moll^{-}reacted $=2.5 \times 10^{-3}-6.1 \times 10^{-4}=1.89 \times 10^{-3} / 0.00189(\mathrm{~mol})$ eqm mol SO ${ }^{2-}=\mathrm{mol} \mathrm{I}^{-}$reacted $/ 2=1.89 \times 10^{-3} \div 2$ $=9.45 \times 10^{-4} / 0.000945$ eqm $\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left(9.45 \times 10^{-4} \times 1000\right) \div 25=0.0378\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ and eqm $\left[I^{-}\right]=\left(6.1 \times 10^{-4} \times 1000\right) \div 25.0=2.44 \times 10^{-2} / 0.0244\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $K_{c}=0.0378 \div 0.0244^{2}=(63.49)=63 / 63.5$ Do not award unless their numbers are correct or are TE. Allow TE throughout. Correct answer with working gains 7 marks $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$ (standalone mark) Allow $\mathrm{dm}^{3} \mathrm{~mol}^{-} / \mathrm{mol}^{-1} \mathrm{dm}^{3} / \mathrm{mol}^{-} \mathrm{dm}^{3}$	(7)

