

# A-level Chemistry (7405/2)

Paper 2: Organic and Physical Chemistry

Specimen 2015 v0.5

Session

2 hours

## **Materials**

For this paper you must have:

- · the Data Booklet, provided as an insert
- a ruler
- a calculator.

### Instructions

- Answer all questions.
- Show all your working.

### Information

• The maximum mark for this paper is 105.

| Please write cle | arly, i | n bl | ock | ca | pita | als, | to  | allo | w c  | har | act | er ( | con | npu | ıter | rec | cog | niti | on. |  |  |     |
|------------------|---------|------|-----|----|------|------|-----|------|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|--|--|-----|
| Centre number    |         |      |     |    |      | (    | Car | did  | late | nu  | mb  | er   |     |     |      |     |     |      |     |  |  |     |
| Surname          |         |      |     |    |      |      |     |      |      |     |     |      |     |     |      |     |     |      |     |  |  |     |
| Forename(s)      |         |      |     |    |      |      |     |      |      |     |     |      |     |     |      |     |     |      |     |  |  |     |
| Candidate signa  | ature   |      |     |    |      |      |     |      |      |     |     |      |     |     |      |     |     |      |     |  |  | - / |

Barcode vo.5 7405/2

# Answer **all** questions.

1 This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

| Experiment | Initial concentration of A / mol dm <sup>-3</sup> | Initial concentration of B / mol dm <sup>-3</sup> | Initial rate<br>/ mol dm <sup>-3</sup> s <sup>-1</sup> |
|------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|
| 1          | 0.12                                              | 0.26                                              | 2.10 × 10 <sup>-4</sup>                                |
| 2          | 0.36                                              | 0.26                                              | $1.89 \times 10^{-3}$                                  |
| 3          | 0.72                                              | 0.13                                              | $3.78 \times 10^{-3}$                                  |

| 0 1 . 1 | Show how these data can be used to deduce the rate expression for the between <b>A</b> and <b>B</b> . | reaction  |
|---------|-------------------------------------------------------------------------------------------------------|-----------|
|         |                                                                                                       | [3 marks] |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |
|         |                                                                                                       |           |

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

Table 2

| Experiment | Initial concentration of C / mol dm <sup>-3</sup> | Initial concentration of D/ mol dm <sup>-3</sup> | Initial rate<br>/ mol dm <sup>-3</sup> s <sup>-1</sup> |
|------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| 4          | 1.9 × 10 <sup>-2</sup>                            | $3.5 \times 10^{-2}$                             | $7.2 \times 10^{-4}$                                   |
| 5          | 3.6 × 10 <sup>-2</sup>                            | 5.4 × 10 <sup>-2</sup>                           | To be calculated                                       |

The rate equation for this reaction is

$$rate = k[\mathbf{C}]^2[\mathbf{D}]$$

| 0 | 1 |   | 2 | Use the data | from experiment 4 to calculate a value for the rate constant, | , <i>k</i> , at this |
|---|---|---|---|--------------|---------------------------------------------------------------|----------------------|
|   |   | - |   |              | Deduce the units of <i>k</i> .                                |                      |
|   |   |   |   |              |                                                               | [3 marks]            |

0 1 . 3 Calculate a value for the initial rate in experiment 5.

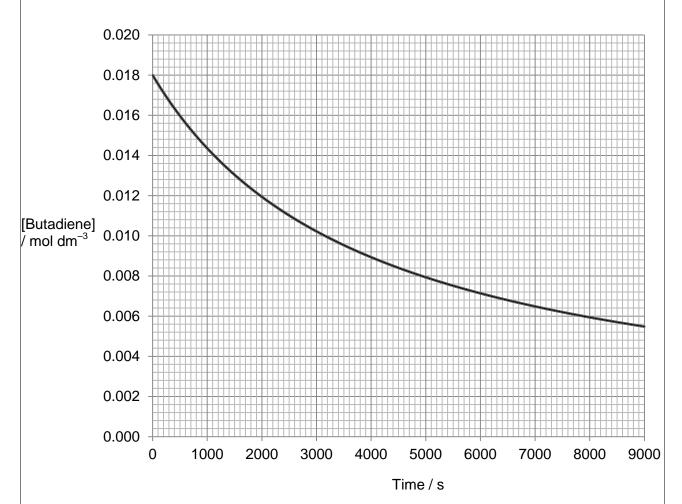

[1 mark]

Initial rate = 
$$\mod \text{dm}^{-3} \, \text{s}^{-1}$$

Question 1 continues on the next page

Barcode Turn over ▶ Typesetter code

| 0 1 . 4 | The rate equation for a reaction is                                                                                                             |                   |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|         | rate = k[E]                                                                                                                                     |                   |
|         | Explain qualitatively why doubling the temperature has a much greater ef the rate of the reaction than doubling the concentration of <b>E</b> . | fect on [3 marks] |
|         |                                                                                                                                                 |                   |
|         |                                                                                                                                                 |                   |
| 0 1 . 5 | A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3$ at 300 K.                                           |                   |
|         | Use the equation $\ln k = \ln A - E_a/RT$ to calculate a value, in kJ mol <sup>-1</sup> , for activation energy of this reaction.               | the               |
|         | The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$ .<br>The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ .       | [2 marks]         |
|         |                                                                                                                                                 |                   |
|         |                                                                                                                                                 |                   |
|         | Activation energy =                                                                                                                             |                   |
|         |                                                                                                                                                 |                   |




**2** Butadiene dimerises according to the equation

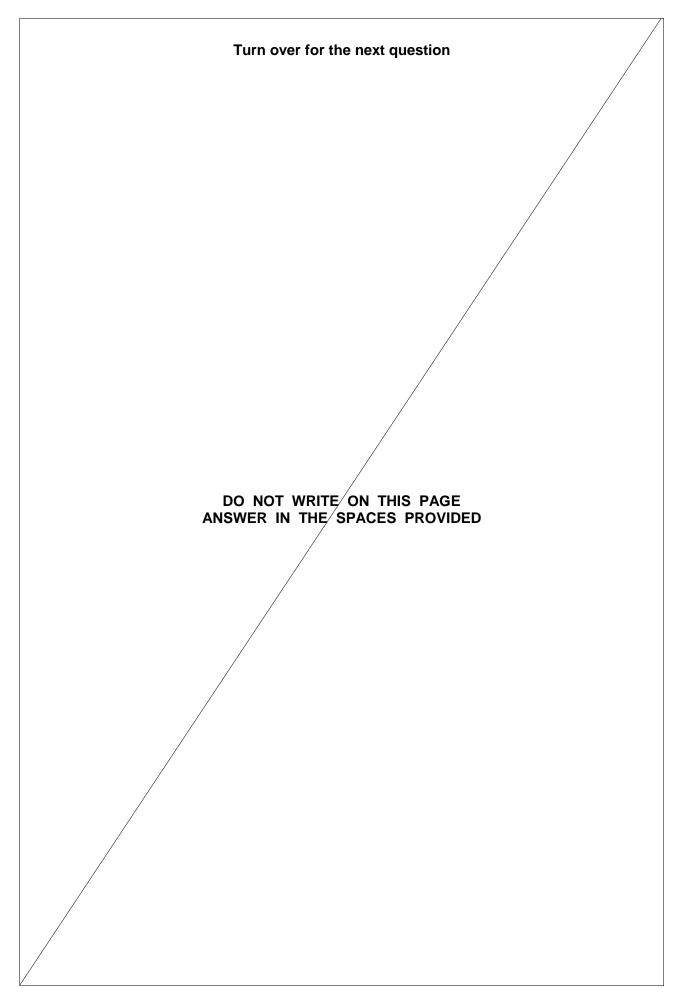
$$2C_4H_6 \longrightarrow C_8H_{12}$$

The kinetics of the dimerisation are studied and the graph of the concentration of a sample of butadiene is plotted against time. The graph is shown in **Figure 1**.

Figure 1



**0 2** • **1** Draw a tangent to the curve when the concentration of butadiene is 0.0120 mol dm<sup>-3</sup>.

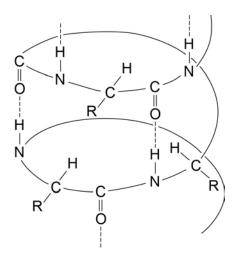

[1 mark]

| 0 2 . 2 | The initial rate of reaction in this experiment has the value $4.57 \times 10^{-6}$ mol dm <sup>-3</sup> s <sup>-1</sup> .            |               |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|---------------|
|         | Use this value, together with a rate obtained from your tangent, to justify the order of the reaction is 2 with respect to butadiene. | at the marks] |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         | Turn over for the next question                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |
|         |                                                                                                                                       |               |

| 3            | Isooctane (C <sub>8</sub> H <sub>18</sub> )<br>burns smoothly in<br><b>Figure 2</b> . |                  |                         |                  |             |          |
|--------------|---------------------------------------------------------------------------------------|------------------|-------------------------|------------------|-------------|----------|
|              |                                                                                       | Fig              | gure 2                  |                  |             |          |
|              |                                                                                       |                  |                         |                  |             |          |
| 0 3 . 1      | Give the IUPAC n                                                                      | ame for isooct   | ane.                    |                  |             | [1 mark] |
| 0 3 . 2      | Deduce the numb                                                                       | er of peaks in t | the <sup>13</sup> C NMR | spectrum of isc  | octane.     | [1 mark] |
| -            | nswer is allowed.                                                                     | ngside the app   | ropriate ansv           | ver.             |             |          |
| CORRECT METH |                                                                                       |                  |                         |                  |             |          |
| If you want  | to change your ans                                                                    | swer vou must    | cross out voi           | ur original answ | er as shown |          |
|              | to return to an ansv                                                                  |                  |                         |                  |             |          |
|              |                                                                                       |                  |                         |                  |             |          |
|              | 5                                                                                     | 0                |                         |                  |             |          |
|              | 6                                                                                     | 0                |                         |                  |             |          |
|              | 7                                                                                     | 0                |                         |                  |             |          |
|              | 8                                                                                     | 0                |                         |                  |             |          |
|              |                                                                                       |                  |                         |                  |             |          |
|              |                                                                                       |                  |                         |                  |             |          |

| 0 3 . 3 | Isooctane can be formed, together with propene and ethene, in a reaction one molecule of an alkane that contains 20 carbon atoms is cracked.        | in which          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|         | Using molecular formulas, write an equation for this reaction.                                                                                      | [1 mark]          |
|         |                                                                                                                                                     |                   |
| 0 3 . 4 | How do the products of the reaction in Question 3.3 show that the reaction example of thermal cracking?                                             | is an<br>[1 mark] |
| 0 3 . 5 | Deduce the number of monochloro isomers formed by isooctane.  Draw the structure of the monochloro isomer that exists as a pair of optical isomers. |                   |
|         |                                                                                                                                                     | 2 marks]          |
|         | Number of monochloro isomers Structure                                                                                                              |                   |
|         |                                                                                                                                                     |                   |
| 0 3 . 6 | An isomer of isooctane reacts with chlorine to form only one monochloro compound.                                                                   |                   |
|         | Draw the <b>skeletal formula</b> of this monochloro compound.                                                                                       | [1 mark]          |
|         |                                                                                                                                                     |                   |
|         |                                                                                                                                                     |                   |
|         |                                                                                                                                                     |                   |
|         |                                                                                                                                                     |                   |
|         | Question 3 continues on the next page                                                                                                               |                   |

| 0 3 . 7 | A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes $^{35}$ Cl and $^{37}$ Cl in the ratio 1.5 : 1.0 Calculate the $M_{\rm r}$ of this monochlorooctane. [2 marks] |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 3 . 8 | Isooctane reacts with an excess of chlorine to form a mixture of chlorinated compounds.  One of these compounds contains 24.6% carbon and 2.56% hydrogen by mass.  Calculate the molecular formula of this compound.  [3 marks]    |
|         | Molecular formula =                                                                                                                                                                                                                |




| 4       | Alcohol <b>A</b> (CH <sub>3</sub> ) <sub>2</sub> CHCH(OH)CH <sub>3</sub> undergoes reactions separately with acid potassium dichromate(VI) and with concentrated sulfuric acid. | ified               |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 0 4 . 1 | Deduce the IUPAC name for alcohol <b>A</b> .                                                                                                                                    | [1 mark]            |
| 0 4 . 2 | Draw the structure of the organic product, <b>B</b> , formed when <b>A</b> is oxidised in reaction with acidified potassium dichromate(VI).                                     | the<br>[1 mark]     |
| 0 4 . 3 | with concentrated sulfuric acid.  Name the mechanism for this dehydration reaction.                                                                                             | eaction<br>[1 mark] |
| 0 4 . 4 | Draw the structure of each isomer.                                                                                                                                              | 2 marks]            |
|         | Isomer C Isomer D                                                                                                                                                               |                     |
|         |                                                                                                                                                                                 |                     |
|         |                                                                                                                                                                                 |                     |
|         |                                                                                                                                                                                 |                     |

| 0 | 4 . | 5 | Name the type of structural isomerism shown by <b>C</b> and <b>D</b> .                                                               | [1 r | mark]         |
|---|-----|---|--------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 0 | 4 . | 6 | List alcohol <b>A</b> , product <b>B</b> and isomer <b>C</b> in order of increasing boiling point.                                   |      | nark]         |
| 0 | 4 . | 7 | Draw the structure of the isomer of <b>A</b> that is <b>not</b> oxidised by acidified potassium dichromate(VI).                      | [1 ɪ | mark]         |
|   |     |   |                                                                                                                                      |      |               |
| 0 | 4 . | 8 | Draw the structure of the isomer of <b>A</b> that <b>cannot</b> be dehydrated to form a by reaction with concentrated sulfuric acid. |      | kene<br>mark] |
|   |     |   | Turn over for the next question                                                                                                      |      |               |

**Figure 3** shows a simplified representation of the arrangement of some amino acids in a portion of a protein structure in the form of an  $\alpha$ -helix.

Figure 3



| 0 | 5 | ] . | 1 | Name the type of protein structure in Figure 3 | 3 |
|---|---|-----|---|------------------------------------------------|---|
|---|---|-----|---|------------------------------------------------|---|

[1 mark]

| 0 | 5 | 2 | Explain the origin of the interaction represented by the dotted lines in Figure 3. |
|---|---|---|------------------------------------------------------------------------------------|
|   |   |   | [4 marks]                                                                          |

| · |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

The tripeptide shown in **Figure 4** is formed from the amino acids glycine, threonine and lysine.

Figure 4

0 6 . 1 Draw a separate circle around **each** of the asymmetric carbon atoms in the tripeptide in **Figure 4**.

[1 mark]

0 6 . 2 Draw the zwitterion of glycine.

[1 mark]

**0 6** . **3** Draw the structure of the species formed when glycine reacts with an excess of bromomethane.

[1 mark]

0 6 . 4 Deduce the IUPAC name of threonine.

[1 mark]

0 6 . 5 Draw the structure of the species formed by lysine at low pH.

[1 mark]

| 7 | Repeating units | of two polymers. | P and Q.         | are shown in    | Figure 5.  |
|---|-----------------|------------------|------------------|-----------------|------------|
| • | repeating arms  | or two porymore, | i ana <b>a</b> , | are one with in | i igaic c. |

Figure 5

| 0 | 7 | 1 | Draw the structure of the monomer used to form polymer P |
|---|---|---|----------------------------------------------------------|
|   |   |   | Name the type of polymerisation involved.                |

[2 marks]

Monomer

Type of polymerisation \_

0 7 . 2 Draw the structures of **two** compounds that react together to form polymer Q. [2 marks]

Structure of compound 1

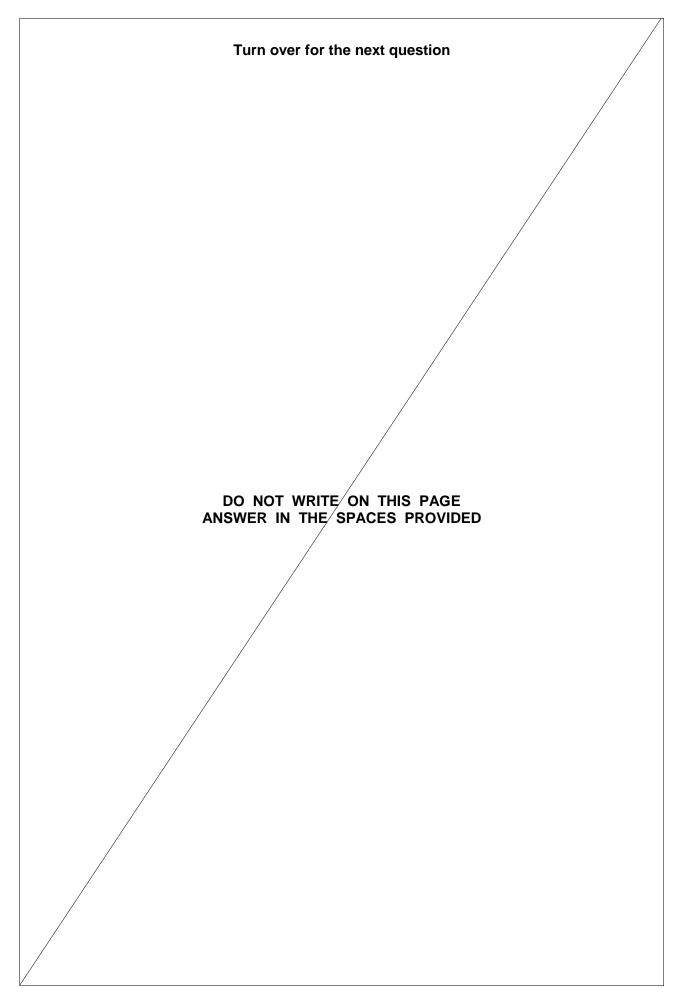
Structure of compound 2

| 0 7 . 3 | Suggest an environmental advantage of polymer <b>Q</b> over polymer <b>P</b> . |           |
|---------|--------------------------------------------------------------------------------|-----------|
|         | Justify your answer.                                                           | [3 marks] |
|         | Advantage                                                                      |           |
|         | Justification                                                                  |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         | Turn over for the next question                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |
|         |                                                                                |           |

**8** The anticancer drug cisplatin operates by reacting with the guanine in DNA.

**Figure 6** shows a small part of a single strand of DNA. Some lone pairs are shown.

Figure 6


0 8 . 1 The DNA chain continues with bonds at X and Y.

State the name of the sugar molecule that is attached to the bond at X.

[1 mark]

| 0 8 . 2 | Messenger RNA is synthesised in cells in order to transfer information The bases in one strand of DNA pair up with the bases used to synthe                                                                              |        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|         | Figure 7 shows two bases used in RNA.                                                                                                                                                                                    |        |
|         | Figure 7                                                                                                                                                                                                                 |        |
|         | H—N  ON  Irest of molecule]                                                                                                                                                                                              | ecule] |
|         | Base A Base B                                                                                                                                                                                                            |        |
|         | Suggest which of the bases <b>A</b> and <b>B</b> forms a pair with guanine in <b>Figures</b> messenger RNA is synthesised.  Explain how the base that you have chosen forms a base pair with guanine in <b>Figures</b> . |        |
|         |                                                                                                                                                                                                                          |        |
|         |                                                                                                                                                                                                                          |        |
|         |                                                                                                                                                                                                                          |        |
|         |                                                                                                                                                                                                                          |        |
|         |                                                                                                                                                                                                                          |        |
|         |                                                                                                                                                                                                                          |        |
|         | Question 8 continues on the next page                                                                                                                                                                                    |        |

| 08.3 | Cisplatin works because one of the atoms on guanine can form a co-ordinate bond with platinum, replacing one of the ammonia or chloride ligands. Another atom on another guanine can also form a co-ordinate bond with the same platinum by replacing another ligand. |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | On <b>Figure 6</b> , draw a ring round an atom in guanine that is likely to bond to platinum.                                                                                                                                                                         |
|      | [1 mark]                                                                                                                                                                                                                                                              |
| 08.4 | An adverse effect of cisplatin is that it also prevents normal healthy cells from replicating.                                                                                                                                                                        |
|      | Suggest <b>one</b> way in which cisplatin can be administered so that this side effect is minimised.                                                                                                                                                                  |
|      | [1 mark]                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                       |



9 1,4-diaminobenzene is an important intermediate in the production of polymers such as Kevlar and also of polyurethanes, used in making foam seating.

A possible synthesis of 1,4-diaminobenzene from phenylamine is shown in **Figure 8**.

Figure 8

0 9 . 1 A suitable reagent for step 1 is CH₃COCI

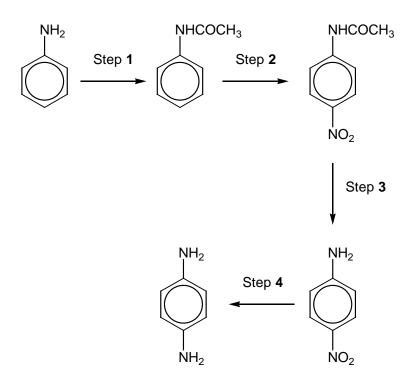
Name and draw a mechanism for the reaction in step 1.

[5 marks]

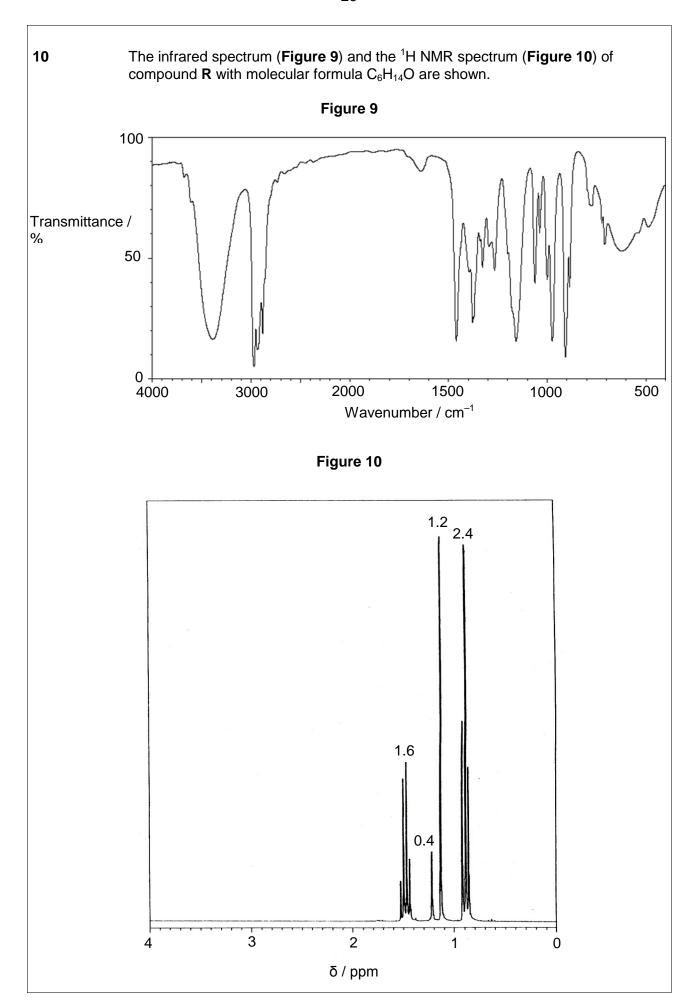
Name of mechanism \_

Mechanism

| 0 9 . 2 | The product of step 1 was purified by recrystallisation as follows.                                                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | The crude product was dissolved in <b>the minimum quantity of hot water</b> and the hot solution was filtered through a hot filter funnel into a conical flask. This filtration removed any insoluble impurities. The flask was <b>left to cool to room temperature.</b> |
|         | The crystals formed were filtered off using a Buchner funnel and a clean cork was used to compress the crystals in the funnel. A little cold water was then poured through the crystals.                                                                                 |
|         | After a few minutes, the crystals were removed from the funnel and weighed. A small sample was then used to find the melting point.                                                                                                                                      |
|         | Give reasons for each of the following practical steps.  [4 marks]                                                                                                                                                                                                       |
|         | The minimum quantity of hot water was used                                                                                                                                                                                                                               |
|         |                                                                                                                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                          |
|         | The flask was cooled to room temperature before the crystals were filtered off                                                                                                                                                                                           |
|         |                                                                                                                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                          |
|         | The crystals were compressed in the funnel                                                                                                                                                                                                                               |
|         |                                                                                                                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                          |
|         | A little cold water was poured through the crystals                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                          |
|         | Question 9 continues on the next page                                                                                                                                                                                                                                    |
|         |                                                                                                                                                                                                                                                                          |


0 9 . 3 The melting point of the sample in Question 9.2 was found to be slightly lower than a data-book value.

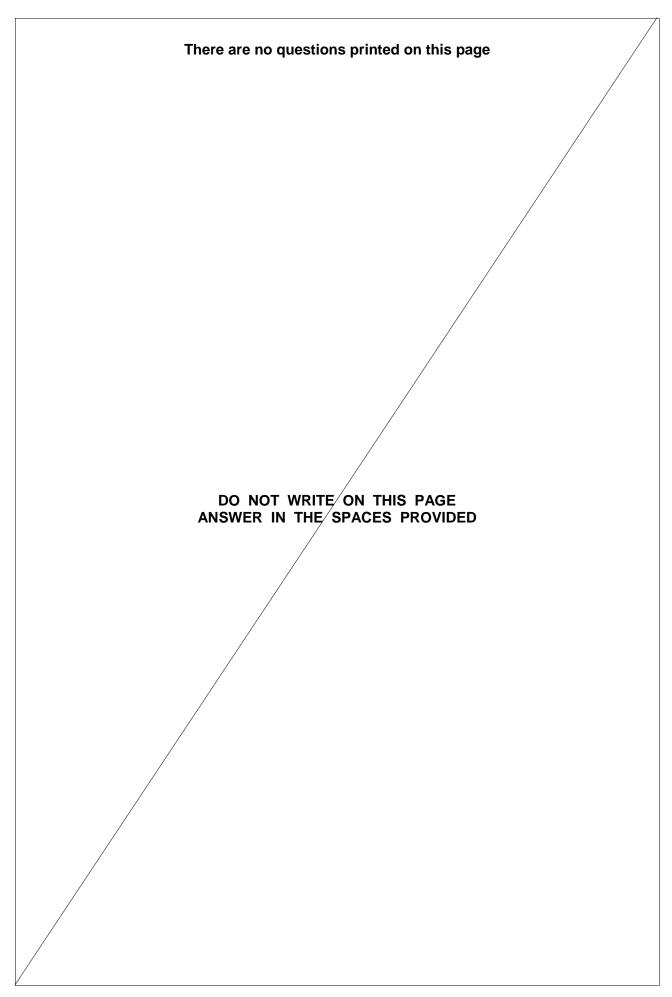
Suggest the most likely impurity to have caused this low value and an improvement to the method so that a more accurate value for the melting point would be obtained.

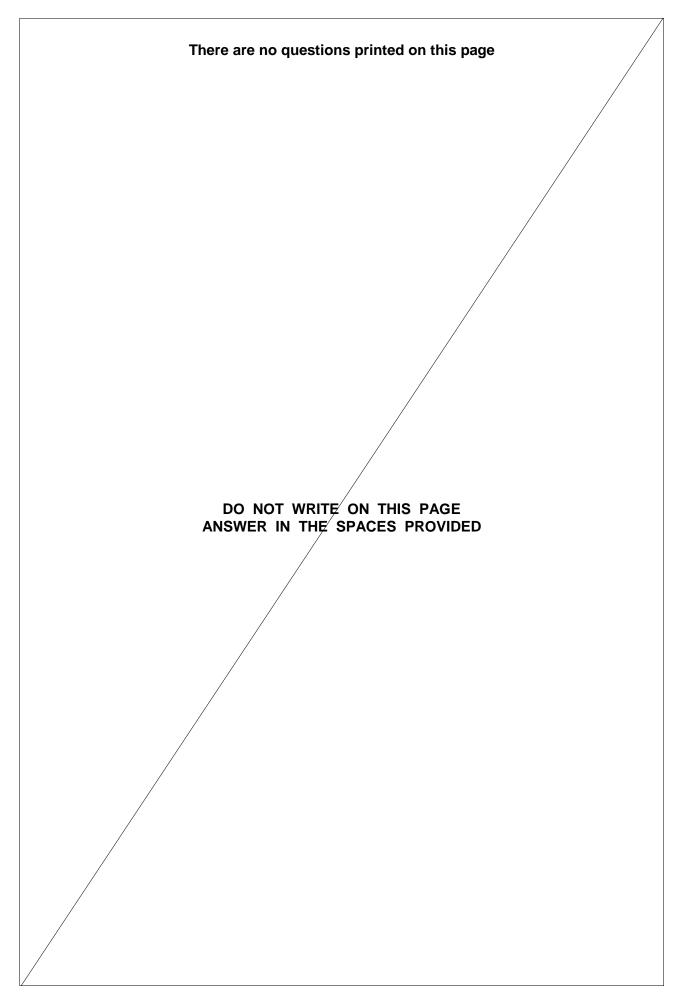

[2 marks]

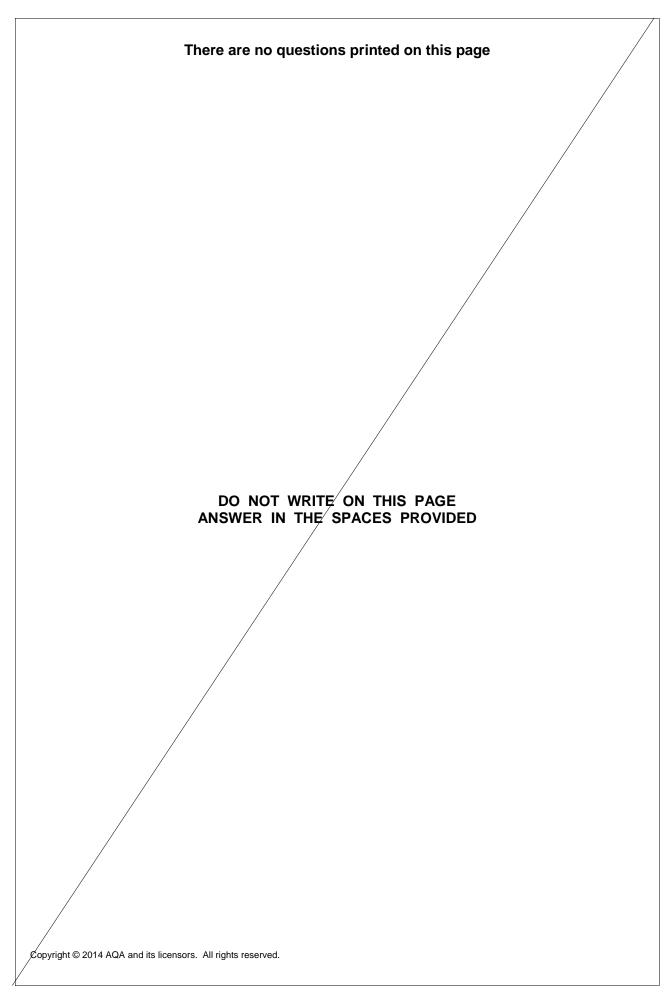
**Figure 8** is repeated here to help you answer the following questions.

Figure 8




| 0 9 . 4 | In an experiment starting with 5.05 g of phenylamine, 4.82 g of purified produce obtained in step 1.  Calculate the percentage yield in this reaction.  Give your answer to the appropriate number of significant figures. | duct                |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|         | [3                                                                                                                                                                                                                         | marks]              |
|         | Percentage yield =                                                                                                                                                                                                         | %                   |
| 0 9 . 5 | sulfuric acid, which react together to form a reactive intermediate.  Write an equation for the reaction of this intermediate in step 2.                                                                                   | d<br><b>1 mark]</b> |
| 09.6    | Name a mechanism for the reaction in step 2.                                                                                                                                                                               | 1 mark]             |
| 0 9 . 7 | Suggest the type of reaction occurring in step 3.                                                                                                                                                                          | 1 mark]             |
| 0 9 . 8 | Identify the reagents used in step 4.                                                                                                                                                                                      | 1 mark]             |





| 1 0 | The relative integration values for the NMR peaks are shown on <b>Figure 10</b>                                                    | <b>D</b> . |
|-----|------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | Deduce the structure of compound <b>R</b> by analysing <b>Figure 9</b> and <b>Figure 10</b> Explain each stage in your deductions. | 0.         |
|     | Use <b>Table A</b> and <b>Table B</b> on the Data Sheet.                                                                           | 0 1 1      |
|     | Į.                                                                                                                                 | 8 marks]   |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     |                                                                                                                                    |            |
|     | Turn over for the next question                                                                                                    |            |

| 11      | Butanone is reduced in a two-step reaction using NaBH <sub>4</sub> followed by dilute hydrochloric acid.                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------|
| 11.1    | Write an overall equation for the reduction of butanone using [H] to represent the reductant.  [1 mark]                         |
| 1 1 . 2 | By considering the mechanism of the reaction, explain why the product has <b>no</b> effect on plane polarised light.  [6 marks] |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |

| 12      | But-1-ene reacts with a reagent of the form HY to form a saturated compound.             |
|---------|------------------------------------------------------------------------------------------|
| 1 2 . 1 | Suggest a reagent of the form HY which reacts with but-1-ene.  [1 mark]                  |
| 1 2 . 2 | Name and draw a mechanism for the reaction in Question 12.1.  [5 marks]                  |
|         | Name of mechanism                                                                        |
|         | Mechanism                                                                                |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
| 1 2 . 3 | Explain how three isomeric products are formed when HY reacts with but-1-ene.  [3 marks] |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         | END OF QUESTIONS                                                                         |





