

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	,
	/	

AS CHEMISTRY

Paper 2 Organic and Physical Chemistry

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
Section B		
TOTAL		

02	Alkenes react with bromine (Br ₂)	Do not write outside the box
0 2 . 1	Name and outline the mechanism for the reaction of cyclohexene with Br ₂ [5 marks]	1
	Name of mechanism	-
	Outline of mechanism	

02.2	Explain why there is an attraction between a C=C double bond and \mbox{Br}_2	[3 marks]
0 2 . 3	Draw the skeletal formula of the halogenoalkane formed when buta-1,3-diene (CH_2 =CHCH=CH ₂) reacts with an excess of Br ₂	[1 mark]
	Turn over for the next question	

IB/M/Jun21/7404/2

9

Do not write outside the box

Turn over ►

Table 1 © ompound propan-2-ol CH_3CH(OH)CH_3 propanone CH_3COCH_3 Shape around central C atom bond angle around central C atom bond angle around central C atom 0 3 . 4 Explain why propanone has a lower boiling point than propan-2-ol. [3 marks]	Complete Table 1 to suggest in a molecule of each compo		e around the central C atom	
Composition CH ₃ CH(OH)CH ₃ CH ₃ COCH ₃ Shape around central C atom Bond angle around central C atom Characteristic control in the properties of the properti		Table 1		2
Compound CH ₃ CH(OH)CH ₃ CH ₃ COCH ₃ Shape around central C atom Bond angle around central C atom [3 marks] [3 marks] [3 marks] [18]				
central C atom Bond angle around central C atom D 3 . 4 Explain why propanone has a lower boiling point than propan-2-ol. [3 marks] [3 marks]	Compound	CH ₃ CH(OH)CH ₃		
central C atom 3.4 Explain why propanone has a lower boiling point than propan-2-ol. [3 marks]	Shape around central C atom			
[3 marks]	Bond angle around central C atom			
				_
				_
Turn over for the next question				

		Do not writ
0 4	CFCs were used as refrigerants and in aerosols.	box
	The scientists Rowland and Molina published research in 1974 to show that CFCs are responsible for the destruction of ozone molecules in the upper atmosphere.	
	A few years later, other scientists discovered that the concentration of ozone in the upper atmosphere was decreasing.	
	In 1987 there was an agreement by many countries to restrict the use of CFCs.	
04.1	The molecule CFC-11 was commonly used as a refrigerant.	
	F - Cl = Cl	
	Use IUPAC rules to name CFC-11	
	[1 mark]	
04.2	A molecule of CFC-11 breaks down in the upper atmosphere to form a chlorine free radical.	
	Give the equation for this reaction. [1 mark]	

		Do not write outside the
0 4 . 3	A typical refrigerator contained 0.50 kg of CFC-11 (M_r = 137.5).	box
	One molecule of CFC-11 causes the destruction of approximately 100 000 molecules of ozone.	
	Use these data to estimate the number of molecules of ozone that can be destroyed by 0.50 kg of CFC-11 Give your answer in standard form.	
	The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ [2 marks]	
	Number of molecules of ozone	
04.4	State the benefit to life on Earth of ozone in the upper atmosphere. [1 mark]	
0 4 . 5	Suggest one reason why the use of CFCs was not restricted until several years after Rowland and Molina published their research. [1 mark]	

			8
		[2 marks]	
0 4.0	State and explain how CFC-11 is able to contribute to global warming.		
0 4 6	CFC-11 is a greenhouse gas that can contribute to global warming.		Do not write outside the box

0 5	This question is about poly(propene).	Do not write outside the box
0 5.1	The three key steps in the manufacture of poly(propene) from crude oil are shown.	
	step 1 step 2 step 3 crude oil → naphtha → propene → poly(propene)	
	Naphtha is a mixture of alkanes with 6 to 12 carbon atoms per molecule.	
	For each step, name the process and state briefly the purpose of the process that leads to the formation of poly(propene).	
	[6 marks]	
	Step 1	
	Name	
	Purpose	
	Step 2	
	Name	
	Purpose	
	Step 3	
	Name	
	Purpose	

		Do not write outside the
0 5.2	Poly(propene) is not biodegradable because it is unreactive.	box
	Explain why poly(propene) is unreactive.	
	[1 mark]	
0 5.3	Scientists are developing new polymers, including some that are biodegradable.	
	Scientists are developing new polymers, including some that are biodegradable.	
	Suggest why it is beneficial for some polymers to be biodegradable.	
	[1 mark]	
		8
	Turn over for the next question	
	Turn over ►	

This question is about two experiments on gases.

In the first experiment, liquid **Y** is injected into a sealed flask under vacuum. The liquid vaporises in the flask.

Table 2 shows data for this experiment.

Tab	le 2
-----	------

Mass of Y	717 mg
Temperature	297 K
Volume of flask	482 cm ³
Pressure inside flask	51.0 kPa

Calculate the relative molecular mass of Y.

Show your working.

The gas constant, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

[5 marks]

Do not write outside the

box

Relative molecular mass of Y

Method

- Remove all the air from the flask.
- Add 0.0010 mol of 2,2,4-trimethylpentane (C₈H₁₈) to the flask.
- Add 0.0200 mol of oxygen to the flask.
- Spark the mixture to ensure complete combustion.
- Cool the mixture to the original temperature.

The equation is

$$C_8H_{18}(g) + 12 \frac{1}{2}O_2(g) \rightarrow 8 CO_2(g) + 9 H_2O(I)$$

Calculate the amount, in moles, of gas in the flask after the reaction.

[2 marks]

Amount of gas _____ mol

Turn over for the next question

7

Do not write outside the

0 7	Prop-2-en-1-ol is a natural chemical found in garlic. It is also used in the production of plasticisers.	Do not write outside the box
	$ \begin{array}{cccc} H & H & H \\ $	
0 7.1	Prop-2-en-1-ol can be prepared by reacting 3-chloroprop-1-ene with dilute aqueous sodium hydroxide.	
	Name the mechanism for this reaction. [1 mark]	
0 7.2	Prop-2-en-1-ol can also be formed from $HOCH_2CH_2CH_2OH$ in the presence of an acid catalyst.	
	$HOCH_2CH_2CH_2OH \rightarrow CH_2=CHCH_2OH + H_2O$	
	Name and outline a mechanism for this reaction. [4 marks]	
	Name of mechanism	
	Outline of mechanism	

IB/M/Jun21/7404/2

0 8	This question is about enthalpy changes.	
0 8.1	Define the term enthalpy change.	[1 mark]
0 8.2	Propane undergoes complete combustion. $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(I)$ $\Delta H = -2046 \text{ kJ mol}^{-1}$ Table 3 shows some bond enthalpy data. Table 3	
	Bond C–H C=O O–H]
	Mean bond enthalpy / kJ mol ⁻¹ 412 743 463	-
	The bond enthalpy for O=O is 496 kJ mol ⁻¹ For H ₂ O(I) \rightarrow H ₂ O(g) Δ H = +41 kJ mol ⁻¹ Use these data to calculate a value for the C–C bond enthalpy in propane.	[4 marks]
	C–C bond enthalpy	_kJ mol ^{_1}

	Section B		Do out
	Answer all questions in this section.		
	e answer per question is allowed. answer completely fill in the circle alongside the appropriate answer	·.)	
CORRECT N	IETHOD WRONG METHODS 🐼 💿 🚓 🗹		
lf you wa	ant to change your answer you must cross out your original answer as	s shown. 💌	
lf you wi as show	sh to return to an answer previously crossed out, ring the answer you n.	now wish to select	
	do your working in the blank space around each question but this w use additional sheets for this working.	ill not be marked.	
09	Which alkene shows <i>E</i> – <i>Z</i> isomerism?	[1 mark]	
	A 2,3-dimethylbut-2-ene	0	
	B 4-methylpent-2-ene	0	
	C methylpropene	0	
	D pent-1-ene	0	
I 0	A compound contains 40.0% carbon, 6.7% hydrogen and 53.3%	oxygen by mass.	
	Which could be the molecular formula of this compound?	[1 mark]	
	Which could be the molecular formula of this compound? A $C_2H_2O_2$	[1 mark]	
	A C ₂ H ₂ O ₂	0	

1 6

1 7

The reactions of 1-bromopropane and 1-chloropropane with potassium cyanide in aqueous ethanol occur at different rates under the same conditions.

Which row correctly shows the compound that has a faster rate of reaction and the correct reason for this?

[1 mark]

Do not write outside the

box

	Compound	Reason	
A	1-bromopropane	C–Br bond weaker than C–Cl bond	0
в	1-bromopropane	C–Br bond stronger than C–Cl bond	0
С	1-chloropropane	C–Br bond weaker than C–Cl bond	0
D	1-chloropropane	C–Br bond stronger than C–Cl bond	0

Which compound has a molecular formula that is different from the others?

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Turn over for the next question

2 1 An excess of magnesium reacts with hydrochloric acid to form hydrogen gas.

Line **X** on the graph shows how the volume of hydrogen produced changes with time as magnesium reacts with 30 cm³ of 1.0 mol dm⁻³ hydrochloric acid.

The reaction is repeated using 20 cm³ of 2.0 mol dm⁻³ hydrochloric acid, with all other conditions the same.

Which line shows how the volume of hydrogen produced changes with time?

[1 mark]

Do not write outside the

box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

