

Please write clearly in block capitals.					
Centre number	Candidate number				
Surname					
Forename(s)					
Candidate signature	I declare this is my own work.				

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

0 1 . 3 Table 1 shows some enthalpy data.

Table 1

	Enthalpy change / kJ mol ^{_1}
Enthalpy of formation of calcium chloride	-795
Enthalpy of atomisation of calcium	+193
First ionisation energy of calcium	+590
Second ionisation energy of calcium	+1150
Enthalpy of atomisation of chlorine	+121
Electron affinity of chlorine	-364

Use **Figure 1** and the data in **Table 1** to calculate a value for the enthalpy of lattice dissociation of calcium chloride.

[2 marks]

Enthalpy of lattice dissociation kJ mol⁻¹

Question 1 continues on the next page

0 1.4	Magnesi	um chloride dissolves in water.		
	Give an e the entha	equation, including state symbols, to repre alpy of solution of magnesium chloride is n	sent the process that occ neasured.	urs when
				[1 mark]
0 1.5	Table 2 s	shows some enthalpy data.		
		Table 2		
			Enthalpy change / kJ mol ⁻¹	
		Enthalpy of lattice dissociation of MgCl ₂	+2493	
		Enthalpy of hydration of Mg ²⁺ (g)	-1920	
		Enthalpy of hydration of Cl ⁻ (g)	-364]
	F,			[2 marks]
		Enthalpy of solution	onł	⟨J mol ^{–1}
0 1.6	The enth	alpy of hydration of Ca²+(g) is –1650 kJ m	10 ^{1–1}	
	Suggest	why this value is less exothermic than tha	t of Mg ²⁺ (g)	[2 marks]

11

0 3	This question is about elements in Period 3 and their compounds.
03.1	When a piece of sodium is added to 200 cm ³ of water in a large beaker a vigorous reaction occurs. The temperature of the water increases by 25 $^{\circ}$ C
	Give an equation, including state symbols, for the reaction of sodium with water.
	Suggest why it is dangerous to react a similar piece of sodium with 10 cm ³ of water in a boiling tube.
	[2 marks]
	Equation
	Why it is dangerous
03.2	Give an equation for the reaction of phosphorus(V) oxide with water.
	Suggest a pH for the solution formed. [2 marks]
	Equation
	рН
03.3	Explain, in terms of crystal structure and bonding, why silicon(IV) oxide has a higher
	[4 marks]

7	
1	

03.4	An element in Period 3 forms an oxide that is insoluble in water. This oxide reacts with sulfuric acid and with aqueous potassium hydroxide.	
	Give the formula for this oxide.	
	Give an equation for the reaction of this oxide with sulfuric acid.	
		[2 marks]
	Formula	
	Equation	
03.5	Give the formula of a hydroxide of an element in Period 3 used in medicine.	[1 mark]
03.6	Identify the element in Period 3, from sodium to chlorine, that has the largest atomic radius.	[1 mark]
	Turn over for the next question	

Turn over ►

12

			Do not write
04	This question is about iron and its ions.		outside the box
04.1	Discuss the role of iron as a heterogeneous catalyst in the Haber process.		
	$3 H_2 + N_2 \rightleftharpoons 2 NH_3$		
	Your answer should include:		
	 the meaning of the term beterogeneous catalyst 		
	 how iron acts as a heterogeneous catalyst the factors that effect the efficiency and lifetime of the estalyst 		
	• the factors that affect the efficiency and lifetime of the catalyst.	[6 marks]	

		Do not write
04.2	Fe ²⁺ ions catalyse the reaction between peroxodisulfate(VI) ions and iodide ions in aqueous solution.	outside the box
	$S_2O_8^{2-}(aq) + 2 I^{-}(aq) → 2 SO_4^{2-}(aq) + I_2(aq)$	
	Explain why this reaction is slow before the catalyst is added. Give two equations to show how Fe ²⁺ ions catalyse this reaction.	
	[4 marks]	
	Why reaction is slow before catalyst added	
	Equation 1	
	Equation 2	
0 4 . 3	Give a reason why Zn ²⁺ ions do not catalyse the reaction in Question 04.2 .	

$$Fe(s) + 2 HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

A 0.998 g sample of pure iron is added to 30.0 cm^3 of $1.00 \text{ mol } \text{dm}^{-3}$ hydrochloric acid.

One of these reagents is in excess and the other reagent limits the amount of hydrogen produced in the reaction.

Calculate the maximum volume, in m³, of hydrogen gas produced at 30 °C and 100 kPa.

Give your answer to 3 significant figures.

In your answer you should identify the limiting reagent in the reaction.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[6 marks]

Do not write outside the

box

	Figure 2 shows some reactions of iron ions in aqueous solution.	Do not write outside the box
	Figure 2	
	$[Fe(H_2O)_6]^{2+} \xrightarrow{Air} [Fe(H_2O)_6]^{3+}$	
	Na ₂ CO ₃ (aq) Na ₂ CO ₃ (aq)	
	Precipitate A Precipitate B	
04.5	Identify A and state its colour. [2 marks]	
	Identity	
	Colour	
04.6	Give the formula of B and state its colour.	
	Give an ionic equation for the reaction of $[Fe(H_2O)_6]^{3+}$ with aqueous Na ₂ CO ₃ to	
	form B. [3 marks]	
	Formula	
	Colour	
	Ionic equation	

04.7	Explain why an aqueous solution containing $[Fe(H_2O)_6]^{3+}$ ions has a lower pH than an aqueous solution containing $[Fe(H_2O)_6]^{2+}$ ions.	Do not write outside the box
	[3 marks]	
		25
	Turn over for the next question	
	i urn over ►	

0 5	This question is about the equilibrium	
	$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$	
0 5.1	State and explain the effect, if any, of a decrease in overall pressure on the equilibrium yield of SO_3	[3 marks]
	Effect	
	Explanation	
0 5.2	A 0.460 mol sample of SO ₂ is mixed with a 0.250 mol sample of O ₂ in a sealed container at a constant temperature. When equilibrium is reached at a pressure of 215 kPa, the mixture contains 0.180 mol of SO ₃	
	Calculate the partial pressure, in kPa, of SO_2 in this equilibrium mixture.	[4 marks]
	Partial pressure of SO ₂	kPa

IB/M/Jun21/7405/1

0 5. **3** A different mixture of SO_2 and O_2 reaches equilibrium at a different temperature.

Table 4 shows the partial pressures of the gases at equilibrium.

Table	4
-------	---

Gas	Partial pressure / kPa
SO ₂	1.67 × 10 ²
O ₂	1.02 × 10 ²
SO ₃	1.85 × 10 ²

Give an expression for the equilibrium constant (K_p) for this reaction.

Calculate the value of the equilibrium constant for this reaction and give its units. [3 marks]

 K_{p}

K_{p}			
	Units		-

Do not write outside the

box

		Do not wit-
06.3	Give the expression for pH.	outside the box
	Calculate the pH of pure water at 50 °C Give your answer to 2 decimal places.	
	Explain why water is neutral at 50 °C	
	[4 marks]	
	Calculation	
	рН	
	Explanation	
	Question 6 continues on the next page	

IB/M/Jun21/7405/1

0 6.8

36.25 cm 3 of 0.200 mol dm 3 sodium hydroxide solution are added to 25.00 cm 3 of 0.150 mol dm $^{-3}$ hydrochloric acid.

Calculate the pH of the final solution at 25 °C

 \textit{K}_w = 1.00 \times 10^{-14} mol^2 dm^{-6} at 25 °C

[5 marks]

Do not write outside the

box

рН _____

16

0 7	This question is about thermodynamics. Consider the reaction shown.						
		2 Al ₂ O ₃	$(s) + 3C(s) \rightarrow c$	4 Al(s) + 3 C	CO ₂ (g)		
	Table 7 s	hows some thermody	namic data.				
			Table	7			
		Substance	Al ₂ O ₃ (s)	Al(s)	C(s)	CO ₂ (g)	
		Δ _f H ^e / kJ mol⁻¹	-1669	0	0	-394	
		S ^e / J K⁻¹ mol⁻¹	51	28	6	214	
0 7.1	Explain w carbon.	hy the standard entro	py value for ca	arbon dioxido	e is greater	than that fo	r mark]
07.2	State the	temperature at which	the standard e	entropy of al	uminium is	0 J K ^{−1} mol [–] [1	1 mark]

0 7.3

Use the equation and the data in **Table 7** to calculate the minimum temperature, in K, at which this reaction becomes feasible.

[7 marks]

Do not write outside the

box

Minimum temperature

Turn over ►

Κ

0 8	This question is about electrode potentials and electrochen	nical cells.	
08.1	State the meaning of the term electrochemical series.		[1 mark]
	Table 8 shows some electrode potentials.		
	Table 8		
		<i>E</i> [⊕] / V	
	$[Fe(H_2O)_6]^{2+}(aq) + 2e^- \rightarrow Fe(s) + 6 H_2O(I)$	-0.44	
	$H^+(aq) + e^- \rightarrow \frac{1}{2} H_2(g)$	0.00	
	$[Co(NH_3)_6]^{3+}(aq) + e^- \rightarrow [Co(NH_3)_6]^{2+}(aq)$	+0.11	
	$[Fe(H_2O)_6]^{3+}(aq) + e^- \rightarrow [Fe(H_2O)_6]^{2+}(aq)$	+0.77	
	$VO_2^+(aq) + 2 H^+(aq) + e^- \rightarrow VO^{2+}(aq) + H_2O(I)$	+1.00	
	$[Co(H_2O)_6]^{3+}(aq) + e^- \rightarrow [Co(H_2O)_6]^{2+}(aq)$	+1.81	
	$H^+(aq) + e^- \rightarrow \frac{1}{2}H_2(g)$		[1 mark]
08.3	Identify the weakest reducing agent in Table 8 .		[1 mark]

Use half-equations from Table 8 to deduce an equation for the reduction of VO_2^+ to form VO^{2+} in aqueous solution by iron. [2 marks]	Do not write outside the box
Use data from Table 8 to explain why $[Co(H_2O)_6]^{3+}(aq)$ will undergo a redox reaction with $[Fe(H_2O)_6]^{2+}(aq)$ Give an equation for this reaction. [2 marks] Explanation	
Equation Suggest why the two cobalt(III) complex ions in Table 8 have different electrode potentials. [1 mark]	
Turn over for the next question	8
	Use half-equations from Table 8 to deduce an equation for the reduction of VO ₂ * to form VO ²⁺ in aqueous solution by iron. [2 marks] Use data from Table 8 to explain why [Co(H ₂ O) ₆] ³⁺ (aq) will undergo a redox reaction with [Fe(H ₂ O) ₆]*(aq) Give an equation for this reaction. [2 marks] Explanation Equation Suggest why the two cobalt(III) complex ions in Table 8 have different electrode potentials. [1 mark] Turn over for the next question

0			
9	This question is about the development of lithium cells. The value of E^{e} for lithium suggests that a lithium cell cou	ld have a large E	MF.
	Table 9 shows some electrode potential data.		
	Table 9		
		<i>E</i> ° / V]
	$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04	-
	$2 H_2O(I) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$	-0.83	
	$\frac{1}{2} I_2(s) + e^- \rightarrow I^-(aq)$	+0.54	
9.1	Use data in Table 9 to explain why an aqueous electrolyte cell.	e is not used for	a lithium
			[2 marks]
	In the 1070s lithium inding calls became a common name	r aquraa far	
9.2	heart pacemakers. Lithium iodide is the final product of the	ne cell reaction.	
	Use the data in Table 9 to calculate the cell EMF of a star	ndard lithium-iod	ine cell.
			[1 mark]
9.3	An EMF value for a commercial lithium-iodine cell is 2.80	V	
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2.
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]
9.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]
.3	An EMF value for a commercial lithium-iodine cell is 2.80 Suggest why this value is different from the value calculat	V ed in Question 0	9.2. [1 mark]

09.4	In some lithium cells, lithium perchlorate (LiClO ₄) is used as the electrolyte. Deduce the oxidation state of chlorine in LiClO ₄ [1 mark]	Do not write outside the box
09.5	In other lithium cells, lithium cobalt oxide electrodes and lithium electrodes are used. Give an equation for the reaction that occurs at the positive lithium cobalt oxide electrode. [1 mark]	
09.6	Give an equation for the reaction that occurs at the negative lithium electrode. [1 mark]	7
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

