AQA

Please write clearly in block capitals.
Centre number

Candidate number

Surname
Forename(s)
Candidate signature I declare this is my own work.

AS

CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Monday 18 May 2020
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
Section B	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- | This question is about atomic structure.

| $\mathbf{0}$ | $\mathbf{1}$ | .1 |
| :--- | :--- | :--- | There is a general trend for an increase in ionisation energy across Period 3.

Give one example of an element that deviates from this trend.
Explain why this deviation occurs.

Element
Explanation \qquad

Figure 1

Identify element \mathbf{X}.
Explain your choice.

Element
Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	2	This question is about a titration.

A student dissolves an unknown mass of sodium hydroxide in water to make $200 \mathrm{~cm}^{3}$ of an aqueous solution.

A $25.0 \mathrm{~cm}^{3}$ sample of this sodium hydroxide solution is placed in a conical flask and is titrated with $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid.

The equation for this reaction is shown.

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Table 1 shows the results of the titrations.
Table 1

Titration	Rough	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final reading $/ \mathbf{c m}^{\mathbf{3}}$	20.75	40.35	21.05	40.60
Initial reading $/ \mathbf{c m}^{\mathbf{3}}$	0.00	20.75	1.20	21.05
Titre $/ \mathbf{c m}^{\mathbf{3}}$	20.75	19.60	19.85	19.55

\qquad g

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ The student uses a funnel to fill the burette with sulfuric acid before starting the |
| :--- | :--- | :--- | :--- | titration. After filling, the student forgets to remove the funnel from the top of the burette.

Suggest why this might affect the titre volume recorded.
\qquad
\qquad
\qquad

0	2	3
3	State one advantage of using a conical flask rather than a beaker for the titration.	

\qquad
\qquad

Turn over for the next question

0	$\mathbf{3}$	This question is about time of flight (TOF) mass spectrometry.

0	3	1
Define the term relative atomic mass.		

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ A sample of krypton is ionised using electron impact. |
| :--- | :--- | :--- | :--- |

The mass spectrum of this sample of krypton has four peaks.
Table 2 shows data from this spectrum.

Table 2

$\boldsymbol{m} / \mathbf{z}$	82	83	84	86
Relative intensity	6	1	28	8

Calculate the relative atomic mass $\left(A_{r}\right)$ of this sample of krypton.
Give your answer to 1 decimal place.
A_{r} \qquad

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{3}$	In a TOF mass spectrometer, ions are accelerated to the same kinetic energy (KE).

The kinetic energy of an ion is given by the equation $K E=\frac{1}{2} m v^{2}$
Where:
$K E=$ kinetic energy $/ \mathrm{J}$
$m=$ mass $/ \mathrm{kg}$
$v=$ speed $/ \mathrm{ms}^{-1}$
In a TOF mass spectrometer, each ${ }^{84} \mathrm{Kr}^{+}$ion is accelerated to a kinetic energy of $4.83 \times 10^{-16} \mathrm{~J}$ and the time of flight is $1.72 \times 10^{-5} \mathrm{~s}$

Calculate the length, in metres, of the TOF flight tube.
The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
\qquad m

Turn over for the next question

0	$\mathbf{4}$	This question is about enthalpy changes.

| 0 | $\mathbf{4}$ | $\mathbf{1}$ State the meaning of the term enthalpy change as applied to a chemical reaction. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

| 0 | $\mathbf{4}$ | $\mathbf{2}$ A student determines the enthalpy change for the reaction between |
| :--- | :--- | :--- | calcium carbonate and hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The student follows this method:

- measure out $50 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrochloric acid using a measuring cylinder and pour the acid into a $100 \mathrm{~cm}^{3}$ glass beaker
- weigh out 2.50 g of solid calcium carbonate on a watch glass and tip the solid into the acid
- stir the mixture with a thermometer
- record the maximum temperature reached.

The student uses the data to determine a value for the enthalpy change.
Explain how the experimental method and use of apparatus can be improved to provide more accurate data.

Describe how this data from the improved method can be used to determine an accurate value for the temperature change.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ | In a different experiment $50.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrochloric acid are |
| :--- | :--- | :--- | :--- | reacted with $50.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The initial temperature of each solution is $18.5^{\circ} \mathrm{C}$
Calculate the maximum final temperature of the reaction mixture.
Assume that the specific heat capacity of the reaction mixture, $c=4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$
Assume that the density of the reaction mixture $=1.00 \mathrm{~g} \mathrm{~cm}^{-3}$
\qquad ${ }^{\circ} \mathrm{C}$

0	4	4
4	Suggest how, without changing the apparatus, the experiment in Question 04.3 could	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} .2$ | $\mathbf{2}$ Give an equation to show how magnesium is used as the reducing agent in the |
| :--- | :--- | :--- | extraction of titanium.

Explain, in terms of oxidation states, why magnesium is the reducing agent.

Equation
\qquad
Explanation \qquad
\qquad
\qquad
\qquad
\qquad

Question 5 continues on the next page

| 0 | 5 | 3 | State what is observed when dilute aqueous sodium hydroxide is added to separate |
| :--- | :--- | :--- | :--- | solutions of magnesium chloride and barium chloride.

[2 marks]

Observation with magnesium chloride \qquad
Observation with barium chloride
Obervaion wit barium chloride

Turn over for the next question

0	$\mathbf{7}$	This question is about Group 7 elements and their compounds.

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$ Chlorine is used to treat water even though it is toxic to humans.

Give one reason why water is treated with chlorine.
Explain why chlorine is added to water even though it is toxic.

Give an equation for the reaction of chlorine with cold water.

Reason
\qquad
Explanation \qquad
\qquad
\qquad
Equation
\qquad

| 0 | $\mathbf{7}$ | .2 | Solid sodium iodide reacts with concentrated sulfuric acid to form iodine and sulfur in |
| :--- | :--- | :--- | :--- | a redox reaction.

Give a half-equation to show the conversion of iodide ions to iodine.
Give a half-equation to show the conversion of sulfuric acid to sulfur.
Give an overall equation for this redox reaction.
Identify one other sulfur-containing reduction product formed when solid sodium iodide reacts with concentrated sulfuric acid.

Half-equation for the conversion of iodide ions to iodine

Half-equation for the conversion of sulfuric acid to sulfur

Overall equation

Other sulfur-containing reduction product
\qquad

Question 7 continues on the next page

A student completes an experiment to determine the percentage by mass of sodium chloride in a mixture of sodium chloride and sodium iodide.

The student uses this method.

- 600 mg of the mixture are dissolved in water to form a solution.
- An excess of aqueous silver nitrate is added to the solution. This forms a precipitate containing silver chloride and silver iodide.
- Excess dilute ammonia solution is then added to the precipitate. The silver chloride dissolves.
- The silver iodide is filtered off from the solution, and is then washed and dried.

The mass of the silver iodide obtained is 315 mg

0	$\mathbf{7}$	$\mathbf{3}$	Silver nitrate is added to the solution.

Suggest why an excess is used.
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{4}$ Calculate the amount, in moles, of silver iodide obtained.

$M_{\mathrm{r}}(\mathrm{Ag})=234.8$
\qquad mol

| 0 | $\mathbf{7}$ | $\mathbf{5}$ Calculate, using your answer to Question 07.4, the mass, in grams, of sodium iodide |
| :--- | :--- | :--- | :--- | in the mixture.

$M_{r}(\mathrm{NaI})=149.9$

Mass of sodium iodide \qquad g

| 0 | 7 | 6 | $C a l c u l a t e, ~ u s i n g ~ y o u r ~ a n s w e r ~ t o ~ Q u e s t i o n ~ 07.5, ~ t h e ~ p e r c e n t a g e ~ b y ~ m a s s ~ o f ~$ |
| :--- | :--- | :--- | :--- | sodium chloride in the mixture.

Turn over for the next question

$\mathbf{0}$	$\mathbf{8}$	This question is about a volatile liquid, \mathbf{A}.

| 0 | 8 | 1 |
| :--- | :--- | :--- | A student does an experiment to determine the relative molecular mass $\left(M_{r}\right)$ of liquid \mathbf{A} using the apparatus shown in Figure 2.

The student injects a sample of \mathbf{A} into a gas syringe in an oven.
At the temperature of the oven, liquid \mathbf{A} vaporises.
Figure 2

Table 3 shows the student's results.
Table 3

Mass of fine needle syringe and contents before injecting	11.295 g
Mass of fine needle syringe and contents after injecting	10.835 g
Volume reading on gas syringe before injecting	$0.0 \mathrm{~cm}^{3}$
Volume reading on gas syringe after injecting	$178.0 \mathrm{~cm}^{3}$
Pressure of gas in syringe	100 kPa
Temperature of oven	$120^{\circ} \mathrm{C}$

Table 3 is repeated here.

Mass of fine needle syringe and contents before injecting	11.295 g
	Mass of fine needle syringe and contents after injecting
Volume reading on gas syringe before injecting	10.835 g
Volume reading on gas syringe after injecting	$0.0 \mathrm{~cm}^{3}$
Pressure of gas in syringe	$178.0 \mathrm{~cm}^{3}$
Temperature of oven	100 kPa

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{3}$ Each reading on the balance used to record the mass of the fine needle syringe and |
| :--- | :--- | :--- | contents had an uncertainty of $\pm 0.001 \mathrm{~g}$

Calculate the percentage uncertainty in the mass of liquid \mathbf{A} injected in this experiment.

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\quad \infty \quad \odot \quad \not \square$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.

| 0 | 9 |
| :--- | :--- | Which atom has the smallest number of neutrons?

A ${ }^{3} \mathrm{H}$
0
B ${ }^{4} \mathrm{He}$ \square
C ${ }^{5} \mathrm{He}$
D ${ }^{4} \mathrm{Li}$
o

| $\mathbf{0}$ Which species contains bonds that have different polarities? |
| :--- | :--- |

A NH_{4}^{+} \square
B COl 4 \square
C $\mathrm{CH}_{3} \mathrm{Cl}$
D $\mathrm{H}_{3} \mathrm{O}^{+}$

```
    O
```


$\mathbf{1} \mathbf{7}$	Which property increases down Group 7?	
	A ability to oxidise a given reducing agent	$\boxed{0}$
	B boiling point	\boxed{o}
	C electronegativity	\boxed{o}
	D first ionisation energy	
		\square

$\mathbf{1}$	$\mathbf{8}$ Which of these elements has the highest melting point?

A Argon 0
B Chlorine 0
C Silicon 0
D Sulfur \square

| 1 | 9 |
| :--- | :--- | Which statement is not always correct for a reaction at equilibrium?

$$
\text { reactants } \rightleftharpoons \text { products }
$$

A The concentrations of the reactants and products are equal. \square
B The equilibrium can be achieved starting from the reactants. \square
C The equilibrium can be achieved starting from the products. \square
D The rate of the forward reaction is equal to the rate of the \square

$$
\begin{array}{cl}
\mathrm{Fe}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeO}(\mathrm{~s}) & \Delta H=-272 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
2 \mathrm{Fe}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \Delta H=-822 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

What is the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction?

$$
2 \mathrm{FeO}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

A +550
B -278
C - 1094
D - 1372

A $\mathrm{Cl}_{2} \mathrm{O}$

Turn over for the next question

A $\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq})$

C $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq})$

A CF_{4}

C CO_{2}

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

