AS
CHEMISTRY
7404/2
Paper 2 Organic and Physical Chemistry

Mark scheme

June 2019
Version 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
AS and A-Level Chemistry Mark Scheme Instructions for Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.
The extra information in the 'Comments' column is aligned to the appropriate answer in the lefthand part of the mark scheme and should only be applied to that item in the mark scheme.
You should mark according to the contents of the mark scheme. If you are in any doubt about applying the mark scheme to a particular response, consult your Team Leader.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which might confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.
The use of M1, M2, M3 etc in the right-hand column refers to the marking points in the order in which they appear in the mark scheme. So, M1 refers to the first marking point, M2 the second marking point etc.

2. Emboldening

2.1 In a list of acceptable answers where more than one mark is available 'any two from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.
2.3 Alternative answers acceptable for a mark are indicated by the use of OR. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general 'List' principle to be followed in such a situation is that 'right + wrong $=$ wrong'.
Each error / contradiction negates each correct response. So, if the number of error / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (often prefaced by 'Ignore' in the mark scheme) are not penalised.

For example, in a question requiring 2 answers for 2 marks:

Correct answers	Incorrect answers (i.e. incorrect rather than neutral)	Mark (2)	Comment
1	0	1	
1	1	1	They have not exceeded the maximum number of responses so there is no penalty.
1	2	0	They have exceeded the maximum number of responses so the extra incorrect response cancels the correct one.
2	0	2	
2	1	1	
2	2	0	
3	0	2	
3	1	1	The incorrect response cancels out one of the two correct responses that gained credit.
3	2	0	Two incorrect responses cancel out the two marks gained.
3	3	0	

3.2 Marking procedure for calculations

Full marks should be awarded for a correct numerical answer, without any working shown, unless the question states 'Show your working' or 'justify your answer'. In this case, the mark scheme will clearly indicate what is required to gain full credit.
If an answer to a calculation is incorrect and working is shown, process mark(s) can usually be gained by correct substitution / working and this is shown in the 'Comments' column or by each stage of a longer calculation.

3.3 Errors carried forward, consequential marking and arithmetic errors

Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation ECF or consequential in the marking scheme.
An arithmetic error should be penalised for one mark only unless otherwise amplified in the marking scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a numerical value from data given in a question.

3.4 Equations

In questions requiring students to write equations, state symbols are generally ignored unless otherwise stated in the 'Comments' column.

Examiners should also credit correct equations using multiples and fractions unless otherwise stated in the 'Comments' column.

3.5 Oxidation states

In general, the sign for an oxidation state will be assumed to be positive unless specifically shown to be negative.

3.6 Interpretation of ' $\mathbf{i t}$ '

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.7 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited unless there is a possible confusion with another technical term or if the question requires correct IUPAC nomenclature.

3.8 Brackets

(.....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.9 Ignore / Insufficient / Do not allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

Do not allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

3.10 Marking crossed out work

Crossed out work that has not been replaced should be marked as if it were not crossed out, if possible. Where crossed out work has been replaced, the replacement work and not the crossed out work should be marked.

3.11 Reagents and Observations

The command word "Identify", allows the student to choose to use either the name or the formula of a reagent in their answer. In some circumstances, the list principle may apply when both the name and the formula are used. Specific details will be given in mark schemes.

The guiding principle is that a reagent is a chemical which can be taken out of a bottle or container. Failure to identify complete reagents will be penalised, but follow-on marks (e.g. for a subsequent equation or observation) can be scored from an incorrect attempt (possibly an incomplete reagent) at the correct reagent. Specific details will be given in mark schemes.

For example, no credit would be given for

- the cyanide ion or CN^{-}when the reagent should be potassium cyanide or KCN ;
- the hydroxide ion or OH^{-}when the reagent should be sodium hydroxide or NaOH ;
- the $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$ion when the reagent should be Tollens' reagent (or ammoniacal silver nitrate). In this example, no credit is given for the ion, but credit could be given for a correct observation following on from the use of the ion. Specific details will be given in mark schemes.

In the event that a student provides, for example, both KCN and cyanide ion, it would be usual to ignore the reference to the cyanide ion (because this is not contradictory) and credit the KCN. Specific details will be given in mark schemes.

- Where an observation is required, the answer must state clearly what is seen, heard or detected by smell. Statements such as 'carbon dioxide is given off' or 'barium sulfate is formed' would not gain marks as observations. Credit would be given for descriptions such as 'effervescence' or 'fizzing' or for 'white precipitate or white ppt'.
- Where relevant, 'no visible change' is an acceptable answer, but the statement 'no observation' would not gain a mark.

3.12 Organic structures

Where students are asked to draw organic structures, unless a specific type is required in the question and stated in the mark scheme, these may be given as displayed, structural or skeletal formulas or a combination of all three as long as the result is unambiguous.
In general

- Displayed formulae must show all of the bonds and all of the atoms in the molecule, but need not show correct bond angles.
- Skeletal formulae must show carbon atoms by an angle or suitable intersection in the skeleton chain. Functional groups must be shown and it is essential that all atoms other than C atoms are shown in these (except H atoms in the functional groups of aldehydes, secondary amines and N -substituted amides which do not need to be shown).
- Structures must not be ambiguous, e.g. 1-bromopropane should be shown as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ and not as the molecular formula $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ which could also represent the isomeric 2-bromopropane.
- Bonds should be drawn correctly between the relevant atoms. This principle applies in all cases where the attached functional group contains a carbon atom, e.g nitrile, carboxylic acid, aldehyde and acid chloride. The carbon-carbon bond should be clearly shown. Wrongly bonded atoms will be penalised on every occasion. (see the examples below)
- The same principle should also be applied to the structure of alcohols. For example, if students show the alcohol functional group as $\mathrm{C}-\mathrm{HO}$, they should be penalised on every occasion.
- Latitude should be given to the representation of $\mathrm{C}-\mathrm{C}$ bonds in alkyl groups, given that $\mathrm{CH}_{3}-$ is considered to be interchangeable with $\mathrm{H}_{3} \mathrm{C}-$ even though the latter would be preferred.
- Similar latitude should be given to the representation of amines where $\mathrm{NH}_{2}-\mathrm{C}$ will be allowed, although $\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}$ would be preferred.
- Poor presentation of vertical $\mathrm{C}-\mathrm{CH}_{3}$ bonds or vertical $\mathrm{C}-\mathrm{NH}_{2}$ bonds should not be penalised. For other functional groups, such as -OH and -CN , the limit of tolerance
is the half-way position between the vertical bond and the relevant atoms in the attached group.

By way of illustration, the following would apply.

allowed

allowed

not allowed

not allowed

allowed

allowed

not allowed

not allowed

not allowed

allowed

not allowed

not allowed

not allowed

allowed

not allowed

not allowed

not allowed

not allowed

not allowed

not allowed

- Representation of CH_{2} by $\mathrm{C}-\mathrm{H}_{2}$ will be penalised
- Some examples are given here of structures for specific compounds that should not gain credit (but, exceptions may be made in the context of balancing equations)

$\mathrm{CH}_{3} \mathrm{COH}$	for	ethanal
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HO}$	for	ethanol
$\mathrm{OHCH}_{2} \mathrm{CH}_{3}$	for	ethanol
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	for	ethanol
$\mathrm{CH}_{2} \mathrm{CH}_{2}$	for	ethene
$\mathrm{CH}_{2} . \mathrm{CH}_{2}$	for	ethene
$\mathrm{CH}_{2}: \mathrm{CH}_{2}$	for	ethene

- Each of the following should gain credit as alternatives to correct representations of the structures.

$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	for	ethene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$	for	propan-2-ol, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

- In most cases, the use of "sticks" to represent C - H bonds in a structure should not be penalised. The exceptions to this when "sticks" will be penalised include
- when a displayed formula is required
- when a skeletal structure is required or has been drawn by the candidate

3.13 Organic names

As a general principle, non-IUPAC names or incorrect spelling or incomplete names should not gain credit. Some illustrations are given here.
Unnecessary but not wrong numbers will not be penalised such as the number ' 2 ' in 2-methylpropane or the number ' 1 ' in 2-chlorobutan-1-oic acid.
but-2-ol
2-hydroxybutane
butane-2-ol
2-butanol
ethan-1,2-diol
2-methpropan-2-ol
2-methylbutan-3-ol
3-methylpentan
3-mythylpentane
3-methypentane
propanitrile
aminethane
2-methyl-3-bromobutane
3-bromo-2-methylbutane
3-methyl-2-bromobutane
2-methylbut-3-ene
difluorodichloromethane
should be butan-2-ol
should be butan-2-ol
should be butan-2-ol
should be butan-2-ol
should be ethane-1,2-diol
should be 2-methylpropan-2-ol
should be 3-methylbutan-2-ol
should be 3-methylpentane
should be 3-methylpentane
should be 3-methylpentane
should be propanenitrile
should be ethylamine (although aminoethane can gain credit)
should be 2-bromo-3-methylbutane
should be 2-bromo-3-methylbutane
should be 2-bromo-3-methylbutane
should be 3-methylbut-1-ene
should be dichlorodifluoromethane

Organic reaction mechanisms

Curly arrows should originate either from a lone pair of electrons or from a bond.
The following representations should not gain credit and will be penalised each time within a clip.

For example, the following would score zero marks

When the curly arrow is showing the formation of a bond to an atom, the arrow can go directly to the relevant atom, alongside the relevant atom or more than half-way towards the relevant atom.

In free-radical substitution

- the absence of a radical dot should be penalised once only within a clip.
- the use of half-headed arrows is not required, but the use of double-headed arrows or the incorrect use of half-headed arrows in free-radical mechanisms should be penalised once only within a clip

Mechanisms may be drawn using structural, displayed or skeletal formulae. However, if skeletal formulae are used in mechanisms such as elimination reactions (from halogenoalkanes or alcohols) or in electrophilic substitutions, any hydrogen atoms that are essential to a step in the mechanism must be shown.

3.15 Extended responses

For questions marked using a 'Levels of Response' mark scheme:
Level of response mark schemes are broken down into three levels, each of which has a descriptor. Each descriptor contains two statements. The first statement is the Chemistry content statement and the second statement is the communication statement.

Determining a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the Chemistry content descriptor for that level. The descriptor for the level indicates the qualities that might be seen in the student's answer for that level. If it meets the lowest level, then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level.

Once the level has been decided, the mark within the level is determined by the communication statement:

- If the answer completely matches the communication descriptor, award the higher mark within the level.
- If the answer does not completely match the communication descriptor, award the lower mark within the level.

The exemplar materials used during standardisation will help you to determine the appropriate level. There will be an exemplar in the standardising materials which will correspond with each level of the mark scheme and for each mark within each level. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the exemplar to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the exemplar.
You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.
Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other chemically valid points. Students may not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme. The mark scheme will state how much chemical content is required for the highest level.

An answer which contains nothing of relevance to the question must be awarded no marks.

For other extended response answers:

Where a mark scheme includes linkage words (such as 'therefore', 'so', 'because’ etc), these are optional. However, a student's marks for the question may be limited if they do not demonstrate the ability to construct and develop a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. In particular answers in the form of bullet pointed lists may not be awarded full marks if there is no indication of logical flow between each point or if points are in an illogical order.
The mark schemes for some questions state that the maximum mark available for an extended response answer is limited if the answer is not coherent, relevant, substantiated and logically structured. During the standardisation process, the Lead Examiner will provide marked exemplar material to demonstrate answers which have not met these criteria. You should use these exemplars as a comparison when marking student answers.

Question	Marking guidance	Additional Comments/Guidelines	Mark
01.1	M1 Named carbonate / hydrogencarbonate / bicarbonate (or Mg / Na) M2 No (visible/observed) reaction/changeleffect M3 effervescence / bubbles (of gas) / fizzing OR M1 universal indicator M2 neutral / no change / pH7 M3 orange / red / pH < 7 / acidic	Allow any correct chemical test. If no reagent or incorrect reagent in M1, CE= $\mathbf{0}$ and no marks for M2 or M3 Allow name or formula of suitable reagent in M1 In M3 ignore reference to name/formula of correct gas, but penalise reference to name/formula of incorrect gas In M3 allow reference to limewater going cloudy as an alternative Penalise incorrect formula of correct reagent (or incomplete reagent) in M1, but mark on for M2 and M3 Where there is no reaction, ignore "nothing (happens)" or "no observation" If use of named alcohol in M1, allow no reaction for M2 and sweet smell for M3 Allow use of other suitable indicators (e.g. litmus)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
01.2	M1 Tollens' (reagent) OR ammoniacal silver nitrate OR a description of making Tollens' M2 No (visible/observed) reaction/change or stays colourless M3 silver mirror or black solid / precipitate OR M1 Fehling's (solution) or Benedict's solution M2 no (visible/observed) reaction/change or stays blue M3 red solid / precipitate (credit orange or brown) OR M1 acidified potassium dichromate or $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$ or acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ M2 no (visible/observed) reaction/change or stays orange M3 (orange to) green solution or goes green OR M1 acidified potassium manganate(VII) or $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$ $O R \mathrm{KMnO}_{4} / \mathrm{H}^{+}$OR acidified KMnO_{4} M2 no (visible/observed) reaction/change or stays purple M3 (purple to) colourless solution OR goes colourless	Allow any correct chemical test. If no reagent or incorrect reagent in M1, CE= 0 and no marks for M2 or M3 Allow name or formula of suitable reagent in M1 Penalise incorrect formula of correct reagent in M1, but mark on for M2 and M3 For Tollens' reagent: for M1 ignore either AgNO_{3} or $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$or "the silver mirror test" on their own, or "Tolling's reagent", but mark M2 and M3; for M3 allow silver precipitate/deposit For Fehling's/Benedict's solution: for M1 Ignore $\mathrm{Cu}^{2+}(\mathrm{aq})$ or CuSO_{4} or "Fellings" on their own, but mark M2 and M3 For acidified potassium dichromate(VI): if "dichromate" or "(potassium) dichromate(IV)" or incorrect formula or no acid, penalise M1 but mark M2 and M3; for M3 ignore dichromate described as "yellow" or "red". For acidified potassium manganate(VII): If "manganate" or "(potassium manganate(IV)" or incorrect formula or no acid, penalise M1 but mark M2 and M3. Credit alkaline / neutral KMnO_{4} for possible full marks but M3 gives brown precipitate or solution goes green Where there is no reaction, ignore "nothing (happens)" or "no observation"	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
02.1	 M1 arrow from lone pair on C of CN^{-}to the C of the CH_{2} group M2 arrow from the $\mathrm{C}-\mathrm{Br}$ bond to the Br	All arrows are double-headed. Penalise one mark from the total for 2.1 if half headed arrows are used. Do not penalise the "correct" use of "sticks" Penalise only once in mechanism for a line and two dots to show a bond Allow the minus sign to be anywhere on the CN^{-}ion M2 penalise formal charges or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$ bond SN1: allow SN1 mechanism with M1 for breakage of $\mathrm{C}-\mathrm{Br}$ bond and $\mathbf{M 2}$ for attack by CN^{-}on correct carbocation Max 1 of 2 marks for wrong organic reactant Ignore wrong organic product (if shown) Extra arrows or incorrect covalent bonds: Penalise the mark for breaking of $\mathrm{C}-\mathrm{Br}$ bond for any extra arrows involving Br or covalent bond in KBr Penalise the mark for attack by CN^{-}for any extra arrows involving CN or covalent bond in KCN	2

Question	Marking guidance	Additional Comments/Guidelines	Mark
02.2	propanenitrile	ignore any gaps, hyphens, commas allow propane-1-nitrile	1
02.3	M1 $\frac{55(.0)}{108.9+65.1}(\times 100)$ or $\frac{55(.0)}{174(.0)}(\times 100)$ or $\frac{55(.0)}{55(.0)+119(.0)}(\times 100)$ M2 $\quad 31.6(\%) \quad$ (must be 3 sf)	31.6 scores 2 marks; 32 scores 1 mark no ECF	1

Question	Marking guidance	Additional Comments/Guidelines	Mark
03.1	M1 moles cyclohexane $=\frac{192.730-192.100}{84(.0)}$ or $\frac{0.630}{84(.0)}(=0.00750)$ M2 heat released $=1216 \times 1000 \times 0.0075(=9120)(\mathrm{J})$ [or $1216 \times 0.0075=(9.12)(\mathrm{kJ})$] M3 $\quad \Delta T\left(=\frac{\mathrm{q}}{\mathrm{mc}}=\frac{9120}{50(.0) \times 4.18}\right)=43.6$ M4 final temperature $=19.1+$ M3 $=62.7$ or $63\left({ }^{\circ} \mathrm{C}\right)$ Alternative M3/4 M3 $\quad 9120=50 \times 4.18 \times($ Final T -19.1$)$ M4 Final $\mathrm{T}=62.7$ or $63\left({ }^{\circ} \mathrm{C}\right)$	Correct answer scores 4 marks 0.0075 scores M1 with or without working 9120 or 9.12 scores M1 and M2 with or without working allow ECF at each stage correct M3 scores M1 and M2 ignore negative sign for q in M2 and/or $\Delta \mathrm{T}$ in M3, but penalise if used as a temperature fall in M4 (if alternative method used for M3/4 and negative value for q is used, allow M3 for expression with negative q value but do not allow M4) (temperatures to at least 2sf) If candidates use a value in kJ rather than J to find $\Delta \mathrm{T}$ / final T then they lose M3, but ECF to M4 [e.g. 9.12 rather than 9120 giving $\Delta T=0.0436$ and final temperature $=19.1(436)$ - this would give 3 marks] If candidates use 0.63 g for m in M3, they will get $\Delta \mathrm{T}=3.46$ and final temperature $=22.56-$ this would give 3 marks] Cannot score M2 using moles = 1	1 1 1

03.2	thermal energy / heat loss or incomplete combustion or evaporation	or idea of heat being transferred to calorimeter allow idea that it is not under standard conditions allow no lid / poor/no insulation	1
03.3	$\begin{array}{ll} \text { M1 } & 6 \times(-394), \quad 6 \times(-286) \text { and }-3920 \\ & \\ \text { M2 } & (\Delta \mathrm{H}=)[6 \times(-394)]+[6 \times(-286)]+3920 \\ & (\text { or }(\Delta \mathrm{H}=)[-2364)]+[-1716)]+3920) \\ & (\text { or }(\Delta \mathrm{H}=)-4080+3920) \\ & \text { M3 } \\ & =-160\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{array}$	-160 scores 3 marks; +160 scores 2 marks -8000 scores 2 marks; +8000 scores 1 mark -1876 scores 2 marks; +1876 scores 1 mark M1 is for correct coefficients, i.e. $6 \times \Delta_{c} H^{H}$ \& $6 x$ $\Delta_{\mathrm{c}} \mathrm{HC} \& 1 \times \Delta_{\mathrm{c}} \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{12}$ (ignore whether + or -) ECF from M1 to M2/3 for incorrect coefficients / arithmetic error / transposition ECF from M2 to M3 for use of products - reactants Ignore any cycle	1 1 1 1

Question	Marking guidance	Additional Comments/Guidelines	Mark
04.1	$\mathrm{C}_{8} \mathrm{H}_{18}+12.5 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$	Allow multiples Ignore state symbols	1
04.2	$\begin{aligned} & 2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2} \text { or } \\ & 25 \mathrm{NO}+\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow 12.5 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{CO}_{2} \end{aligned}$	Allow multiples Ignore state symbols Allow $2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ (or multiples)	1
04.3	M1 moles $\mathrm{SO}_{2}=\frac{6490000 \times 10^{6}}{64.1}\left(=\frac{6.49 \times 10^{12}}{64.1}=1.012 \times 10^{11}\right)$ M2 mass $\mathrm{CaO}=\left(\frac{1.012 \times 10^{11} \times 56.1}{1000}\right)=5.68 \times 10^{9}(\mathrm{~kg})$	M2 must be in standard form Correct answer in standard form scores 2 marks (allow $5.6-5.7 \times 10^{9}$). Answer to at least 2 sf . Correct answer in non-standard form scores 1 mark Answers that are $5.6-5.7 \times 10^{n}$ score 1 mark For other answers, allow ECF from M1 to M2 (but answer must be in standard form for M2 to score) Alternative M1 mass $\mathrm{CaO}=\frac{6490000 \times 10^{6}}{64.1} \times 56.1$ $=5.68$ million tonnes M2 $\quad 5.68 \times 10^{9}(\mathrm{~kg})$ (7.4.. $\times 10^{9}$ would score 1 mark due to use of $\frac{64.1}{56.1}$)	1 1

Question Marking guidance Additional Comments/Guidelines Mark M1 on at least one O atom two lone pairs and on at least one OH $\delta+$ on H and $\delta-$ on O Accept pair of dots or crosses for lone pair in place of orbital shape (orbital shape may or may not include two electrons) Ignore any partial charges on C-H or $\mathrm{C}-\mathrm{O}$ bonds 1
05.1

	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.		6	Stage 1 Describes the effect of catalyst use
	Level 3 (5-6 marks)	All stages are covered and each stage is generally correct and virtually complete. (6 v 5) Answer is well structured, with no repetition or irrelevant points, and covers all aspects of the question. Accurate and clear expression of ideas with no errors in use of technical terms.		1a use of a catalyst has no impact on equilibrium yield 1b use of a catalyst gives faster rate 1c use of catalyst lowers costs Stage 2 Describes the effect of pressure
05.3	Level 2 (3-4 marks)	All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete (4 v 3) Answer has some structure and covers most aspects of the question. Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. If any, only minor errors in use of technical terms.		2a higher pressure gives a higher equilibrium yield 2b higher pressure gives a faster rate 2c the higher the pressure, the greater the cost Stage 3 Describes the effect of temperature 3a lower temperature gives a higher equilibrium yield 3b higher temperature gives a faster rate 3c the higher the temperature, the greater the cost
	Level 1 (1-2 marks)	Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete (2 v 1) Answer includes statements which are presented in a logical order and/or linked.		Note that converse statements are fine (e.g. 1a higher temperature gives a lower equilibrium yield)
	0 marks	Insufficient correct chemistry to gain a mark.		

Question	Marking guidance	Additional Comments/Guidelines	Mark

06.2	 or	Any correct structural formula, including $\mathrm{OSO}_{3} \mathrm{H}$ bonded through O to correct C	1
06.3	M1 idea that \mathbf{E} is formed from/via more stable carbocation M2 idea that 2^{y} carbocation is more stable than 1^{y} carbocation	M1-2 Allow carbonium ion in place of carbocation M2 Allow descriptions in terms of number of alkyl groups attached to positive C atom Ignore reference to inductive effect Penalise M1 if answer suggests that the products are carbocations (but could score M2) In order to access M1 and/or M2 there must be some reference to carbocations (carbonium ions) by name or structure or description	1 1

Question	Marking guidance	Additional Comments/Guidelines	Mark
07.1		Must be a skeletal formula Need to show the H atoms of OH groups	1

Question Marking guidance Additional Comments/Guidelines Mark M1 moles of acid $=0.00500 \times \frac{250}{1000} \quad(=0.00125)$ 130 scores 2 marks Final answer must be at least 2 sf Allow ECF from M1 to M2 $0.13(0)$ scores 1 mark $2080(\mathrm{mg})$ scores 1 mark 1 M2 mass of acid $(=0.00125 \times 104(.0)=0.130 \mathrm{~g})=130(\mathrm{mg})$ 1

Question	Marking guidance	Additional Comments/Guidelines	Mark

\begin{tabular}{|c|c|c|c|}
\hline 08.1 \& \begin{tabular}{l}
M1 moles of propan-1-ol \(=\frac{6.0 \times 0.80}{60.0} \quad(=0.080)\) \\
M2 moles of \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{M 1}{3} \quad(=0.0267)\) \\
M3 volume of \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{M 2}{0.40} \times 1000=67\left(\mathrm{~cm}^{3}\right)\) (allow 66.666.... to 68)
\end{tabular} \& \begin{tabular}{l}
\(67 \mathrm{~cm}^{3}\) scores 3 marks \\
allow ECF for M2 and M3 \\
final answer to at least 2 sf \\
\(200\left(\mathrm{~cm}^{3}\right)\) scores 2 marks; \\
\(66.6\left(\mathrm{~cm}^{3}\right)\) is outside range and scores 2 marks; \\
\(66.6\left(\mathrm{~cm}^{3}\right)\) (i.e. 66.6 dot scores 3 marks)
\end{tabular} \& 1
1
1 \\
\hline 08.2 \& \begin{tabular}{l}
M1 an attempt to draw apparatus that is clearly for (fractional) distillation \\
M2 suitable drawing of distillation apparatus with condenser attached to side of distillation head \\
- condenser must have outer tube for water that is sealed at the ends but have two openings for water in/out (that are open) \\
- condenser must have downwards slope \\
- condenser must be open at each end \\
- as this is a cross-section, there should be a continuous flow through the diagram from the flask to the end of the open condenser (there should be no lines drawn across implying a seal of any sort) \\
- there must be no gaps at joints between apparatus where vapour could escape \\
- there must be some opening to the system at the collection end \\
M3 condenser labelled including labels for water in and water out (water must come in at lower end)
\end{tabular} \& \begin{tabular}{l}
On this occasion, the apparatus does not need a thermometer or a collection container \\
Ignore any fractionating column IN M1 and M2 between the flask and condenser. \\
For M3, if water in and out clearly stated, ignore direction of any arrows drawn. Allow 'condensing tube' or 'condensing column' or similar for name of condenser. \\
If a reflux diagram is drawn (any diagram with a condenser attached vertically into the flask is a reflux set up, even with a downwards tube from the top of the condenser): \\
- cannot score M1 or M2 \\
- could score M3 for condenser labelled including labels for water in and water out (water must come in at the lower end)
\end{tabular} \& 1
1

1

\hline
\end{tabular}

MARK SCHEME - AS CHEMISTRY - 7404/2 - JUNE 2019

Question	Marking guidance	Additional Comments/Guidelines	Mark
09.1	$\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl} \rightarrow \bullet \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{Cl}+\bullet \mathrm{Cl}$ or $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}_{2} \rightarrow \bullet \mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}+\bullet \mathrm{Cl}$	Any correct structure or molecular formula for reactant and/or product The dots can be shown anywhere around each radical	1
09.2	$\mathrm{M} 1 \mathrm{Cl} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{ClO} \bullet+\mathrm{O}_{2}$ $\mathrm{M} 2 \mathrm{ClO} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{Cl} \bullet+2 \mathrm{O}_{2}$	M1 and M2 could be in either order Credit the dot anywhere on the radical Penalise absence of dot once only Individual multiples acceptable but both need to be equivalent multiples for both marks to be awarded Ignore state symbols (Accept alternative pair of equations for $\mathbf{M 2}$ (both needed for $\mathbf{M} 2$) $\mathrm{O}_{3} \rightarrow \mathrm{O}+\mathrm{O}_{2}$ $\left.\mathrm{ClO} \bullet+\mathrm{O} \rightarrow \mathrm{Cl} \bullet+\mathrm{O}_{2}\right)$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

Question	Marking guidance	Additional Comments/Guidelines	Mark
09.3	Volume as a gas: M1 moles butane $=\frac{38.8}{58.0}(=0.669)$ M2 $\quad V=\frac{n R T}{P}$ M3 $\quad V=\frac{0.669 \times 8.31 \times 272}{101000}$ M4 $\quad\left(=0.0150 \mathrm{~m}^{3}\right)=15000\left(\mathrm{~cm}^{3}\right)$ (14971) Volume as a liquid: M5 $\quad V=\frac{38.8}{0.60}=65$ or 64.7 or $64.666 \ldots\left(\mathrm{~cm}^{3}\right)$ Expansion factor M6 $\left(\frac{M 4}{M 5}\right)=\left(\frac{15000}{64.7}\right)=232$ (allow $\left.230-232\right)$	Answers to M4, M5 and M6 should be 2sf or more M1-M4 $15000\left(\mathrm{~cm}^{3}\right) \quad$ (14971) scores M1-M4 M1 may score from a value or expression within M3 M2 could score from an attempt at M3 that shows attempts at values for n, R, T and P in suitable places M4 ignore additional answers following this in other units (if incorrect it will be penalised in M6) Allow ECF in M3 and M4 based on incorrect moles of butane from M1; allow ECF in M4 based on incorrect units in M3 Allow ECF in M3 and M4 based on inverted expression for volume $V=\frac{P}{n R T}$; for other incorrect expressions, allow a maximum of one mark for M3 or M4 for correct unit conversion for P to Pa in M3 or volume to cm^{3} in M4 M5 ignore additional answers following this in other units (if incorrect it will be penalised in M6) $64.6\left(\mathrm{~cm}^{3}\right)$ is outside range and does not score M5 $64.6\left(\mathrm{~cm}^{3}\right)$ (i.e. 66.6 dot scores M5) M6 allow ECF based on values for M4 and M5	1 1 1 1 1 1 1 1

Question	Marking Guidance	Mark	Comments
10	C	1	0.017
11	D	1	The mean energy of the molecules is greater than the most probable energy of the molecules
12	A	1	1.5
13	D	1	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CHO}$
14	C	1	4
15	D	1	$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \bullet \rightarrow \bullet \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl}$
16	C	1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
17	A	1	It displays E-Z isomerism
18	D	1	3-methylbutan-2-ol
19	B	1	$\mathrm{CH}_{3} \mathrm{OH}$
20	D	1	pentan-2-ol
21	D	1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
22	A	1	2-methylbut-1-ene
23	B	1	4-hydroxybutanone
24	A	1	$2.28 \times 10^{-18} \mathrm{~J}$

[^0]: Copyright © 2019 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

