

Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Monday 8 June 2020

Afternoon

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

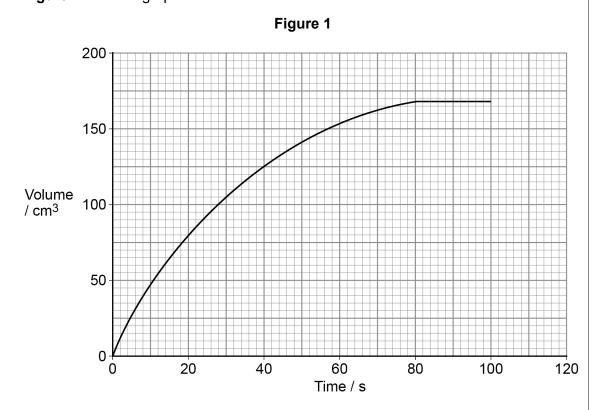
TOT Examiner 3 030		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

For Examiner's Use

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

Answer all questions in the spaces provided.


0 1 This question is about rates of reaction.

Phosphinate ions (H₂PO₂⁻) react with hydroxide ions to produce hydrogen gas as shown.

$$H_2PO_2^- + OH^- \rightarrow HPO_3^{2-} + H_2$$

A student completed an experiment to determine the initial rate of this reaction. The student used a solution containing phosphinate ions and measured the volume of hydrogen gas collected every 20 seconds at a constant temperature.

Figure 1 shows a graph of the student's results.

Use the graph in **Figure 1** to determine the initial rate of reaction for this experiment. State its units. Show your working on the graph.

[3 marks]

Rate _____ Units ____

0 1.2

Another student reacted different initial concentrations of phosphinate ions with an excess of hydroxide ions. The student measured the time (*t*) taken to collect 15 cm³ of hydrogen gas. Each experiment was carried out at the same temperature. **Table 1** shows the results.

Table 1

Initial [H₂PO₂¯] / mol dm ⁻³	<i>t</i> / s
0.25	64
0.35	32
0.50	16
1.00	4

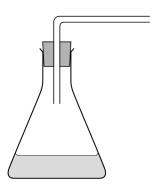
State the relationship between the initial concentration of phosphinate and time (t).

Deduce the order of the reaction with respect to phosphinate.

[2 marks]

Relationship			
Order			

Question 1 continues on the next page



0 1 . 3

Complete the diagram in **Figure 2** to show how the hydrogen gas could be collected and measured in the experiments in Questions **01.1** and **01.2**.

[1 mark]

Figure 2

The rate equation for a different reaction is

$$rate = k [L] [M]^2$$

0 1 . 4

Deduce the overall effect on the rate of reaction when the concentrations of both ${\bf L}$ and ${\bf M}$ are halved.

Г4	ma	r	٦,
П	ma	r	Κ

Ш	I	Ш	1	Il	I	П	П	ı

			Do not
0 1.5	The rate of reaction is 0.0250 mol dm $^{-3}$ s $^{-1}$ when the concentration of $\bf L$ is 0.0155 mol dm $^{-3}$		outside bo.
	Calculate the concentration of \boldsymbol{M} if the rate constant is 21.3 $\text{mol}^{-2}~\text{dm}^6~\text{s}^{-1}$	[3 marks]	
	Concentration of M	mol dm ⁻³	
0 1.6	Define the term overall order of reaction.	[1 mark]	
			11
	Turn over for the next question		
	rum over for the next question		

0 2

Prilocaine is used as an anaesthetic in dentistry.

Figure 3 shows the structure of prilocaine.

Figure 3

0 2 . 1

Draw a circle around any chiral centre(s) in Figure 3.

[1 mark]

0 2 . 2

Identify the functional group(s) in the prilocaine molecule.

[1 mark]

Tick (\checkmark) the box(es) corresponding to the functional group(s).

Amide	Amine	Ester	Ketone

0 2 . 3

Prilocaine is completely hydrolysed in the human body to give a mixture of products.

Draw the structures of the two organic products formed in the complete hydrolysis of prilocaine in acidic conditions.

[3 marks]

0 2 . 4

Figure 4 shows optical isomers F and G.

Figure 4

Isomer **F** is the active compound in the medicine ibuprofen.

In the manufacture of ibuprofen both isomers **F** and **G** are formed. An enzyme is then used to bind to isomer **G** and catalyse its hydrolysis.

After the products of hydrolysis of **G** are removed, a pure sample of isomer **F** is collected.

Explain how a structural feature of this enzyme enables it to catalyse the hydrolysis of isomer **G** but not the hydrolysis of isomer **F**.

[2 marks]

7

Turn over for the next question

0 3	This question is about the structural is	somers shown.	
	P	Q	R
	ОН	ОН	ОН
	S HO	T O	U
0 3.1	Identify the isomer(s) that would react acidified potassium dichromate(VI).	when warmed with	
	State the expected observation when	acidified potassium dichro	omate(VI) reacts. [2 marks]
	Isomer(s)		
	Expected observation		
0 3.2	Identify the isomer(s) that would react		
	State the expected observation when	Tollens' reagent reacts.	[2 marks]
	Isomer(s)		
	Expected observation		

0 3.3	Separate samples of each isomer are warmed with ethanoic acid and a few drops of concentrated sulfuric acid. In each case the mixture is then poured into a solution of sodium hydrogencarbonate.	outsi b
	Identify the isomer(s) that would react with ethanoic acid.	
	Suggest a simple way to detect if the ethanoic acid reacts with each isomer.	
	Give a reason why the mixture is poured into sodium hydrogencarbonate solution. [3 marks]	
	Isomer(s)	
	Suggestion	
	Reason	
0 3.4	State the type of structural isomerism shown by isomers P, Q, R and S. [1 mark]	
0 3.5	Describe fully how infrared spectra can be used to distinguish between isomers R , S and T . Use data from Table A in the Data Booklet in your answer. [4 marks]	
0 3.6	State why mass spectrometry using electrospray ionisation is not a suitable method to distinguish between the isomers. [1 mark]	
		13

0 4	Aspirin can be produced by reacting salicylic acid with ethanoic anhydride. An incomplete method to determine the yield of aspirin is shown.
	1. Add about 6 g of salicylic acid to a weighing boat.
	2. Place the weighing boat on a 2 decimal place balance and record the mass.
	3. Tip the salicylic acid into a 100 cm ³ conical flask.
	4
	5. Add 10 cm³ of ethanoic anhydride to the conical flask and swirl.
	6. Add 5 drops of concentrated phosphoric acid.
	7. Warm the flask for 20 minutes.
	8. Add ice-cold water to the reaction mixture and place the flask in an ice bath.
	9. Filter off the crude aspirin from the mixture and leave it to dry.
	10. Weigh the crude aspirin and calculate the yield.
0 4.1	Describe the instruction that is missing from step 4 of the method.
	Justify why this step is necessary.
	[2 marks]
	Instruction
	Justification
0 4.2	Suggest a suitable piece of apparatus to measure out the ethanoic anhydride in
	step 5 . [1 mark]
0 4.3	Identify a hazard of using concentrated phosphoric acid in step 6. [1 mark]

- 0 4.4
- Complete the equation for the reaction of salicylic acid with ethanoic anhydride to produce aspirin.

[1 mark]

- 0 4 . 5
- A 6.01 g sample of salicylic acid (M_r = 138.0) is reacted with 10.5 cm³ of ethanoic anhydride (M_r = 102.0). In the reaction the yield of aspirin is 84.1%

The density of ethanoic anhydride is 1.08 g cm⁻³

Show by calculation which reagent is in excess.

Calculate the mass, in g, of aspirin ($M_r = 180.0$) produced.

[5 marks]

Reagent in excess	

Mass of aspirin _____ g

Do not write outside the

0 4 . 6	Suggest two ways in which the melting point of the crude aspirin collected in would differ from the melting point of pure aspirin.	step 9 [2 marks]
	Difference 1	
	Difference 2	
4.7	The crude aspirin can be purified by recrystallisation using hot ethanol (boiling point = 78 °C) as the solvent.	
	Describe two important precautions when heating the mixture of ethanol and aspirin.	
	Precaution 1	[2 marks]
	Precaution 2	
4.8	The pure aspirin is filtered under reduced pressure. A small amount of cold ethanol is then poured through the Buchner funnel.	
	Explain the purpose of adding a small amount of cold ethanol.	[1 mark]
9	A sample of the crude aspirin is kept to compare with the purified aspirin.	
	Describe one difference in appearance you would expect to see between the solid samples.	ese two

Do not write outside the Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Do not write outside the box

0 5	This question is about 2-bromopropane.	
0 5.1	Define the term electronegativity. Explain the polarity of the C–Br bond in 2-bromopropane.	[3 marks]
	Electronegativity	
	Explanation	
0 5.2	Outline the mechanism for the reaction of 2-bromopropane with an excess of ammonia.	[4 marks]

0 5.3	Draw the skeletal formula of the main organic species formed in the reaction between a large excess of 2-bromopropane and ammonia.	Do not write outside the box
	Give a use for the organic product. [2 marks]	
	Skeletal formula	
	Use	9

Turn over for the next question

0 6 Polystyrene can be made from benzene in the series of steps shown.

$$\begin{array}{c}
O \\
C \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
Step 1 \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
C \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
Step 3 \\
Step 4
\end{array}$$

$$\begin{array}{c}
C \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
C \\
CH_{2}$$

$$\begin{array}{c}
C \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
C \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
C \\
CH_{2}$$

$$\begin{array}{c}
C \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2}$$

$$\begin{array}{c}
CH_{2}$$

$$\begin{array}{c}
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2}$$

$$\begin{array}{c}
CH_{2}$$

$$\begin{array}{c}
CH_{2}$$

$$CH_{2}$$

$$\begin{array}{c}
CH_{2}$$

$$CH_{2}$$

$$CH$$

0 6 . 1	State the type of reaction in step 1.		
	Identify the reagent(s) and conditions needed for step 1.	[3 marks]	
	Type of reaction		
	Reagent(s)		
	Conditions		

0 6. 2 State the name of the mechanism for the reaction in step 2.

Identify the inorganic reagent needed for step 2.

Name the organic product of step 2.

[3 marks]

Name of mechanism	
Inorganic reagent	

Name of organic product _____

0 6.3 The organic product of step 2 is reacted with concentrated sulfuric acid in step 3.

Outline the mechanism for step 3.

[3 marks]

0 6. 4 Draw the repeating unit of polystyrene.

[1 mark]

10

Turn over for the next question

0 7	This question is about NMR spectroscopy.
0 7.1	A compound is usually mixed with Si(CH ₃) ₄ and either CCl ₄ or CDCl ₃ before recording the compound's ¹ H NMR spectrum.
	State why Si(CH ₃) ₄ , CCl ₄ and CDCl ₃ are used in ¹ H NMR spectroscopy.
	Explain how their properties make them suitable for use in ¹ H NMR spectroscopy. [6 marks]

Question 7 continues on the next page

Turn over ▶

Do not write outside the box

Do not write outside the box

0 7 . 2	Deduce the splitting pattern for each of the peaks given by the H atoms label \boldsymbol{x} , \boldsymbol{y} and \boldsymbol{z} in the ¹ H NMR spectrum of the compound shown.	ed
	x y z CH ₃ CHClCOCH(CH ₃) ₂	
		3 marks]
	<i>x y</i>	
	z	
0 7.3	Suggest why it is difficult to use Table B in the Data Booklet to predict the chemical shift (δ value) for the peak given by the H atom labelled y .	[1 mark]
0 7 . 4	Two isomers of CH ₃ CHClCOCH(CH ₃) ₂ each have two singlet peaks only in the	neir
	¹ H NMR spectra. In both spectra the integration ratio for the two peaks is 2:9	
	Deduce the structures of these two isomers.	2 marks]
	Isomer 1	
	Jacobs 2	
	Isomer 2	
		1.1

This question is about citric acid, a hydrated tricarboxylic acid. Its formula can be represented as H₃Y.*x*H₂O

0 8 . 1 A 1.50 g sample of H₃Y.xH₂O contains 0.913 g of oxygen by mass. The sample burns completely in air to form 1.89 g of CO₂ and 0.643 g of H₂O

Show that the empirical formula of citric acid is C₃H₅O₄

[5 marks]

0 8 . 2 A 3.00 g sample of $H_3Y.xH_2O$ (M_r = 210.0) is heated to constant mass. The anhydrous H_3Y that remains has a mass of 2.74 g

Show, using these data, that the value of x = 1

[2 marks]

Figure 5

0 8. 3 Complete this IUPAC name for H₃Y

[1 mark]

propane-1, 2, 3-tricarboxylic acid

0 8.4 State the number of peaks you would expect in the ¹³C NMR spectrum for H₃Y [1 mark]

9

A and **B** react together to form an equilibrium mixture.

$$A(aq) + 2B(aq) \rightleftharpoons C(aq)$$

An aqueous solution containing 0.25 mol of $\bf A$ is added to an aqueous solution containing 0.25 mol of $\bf B$.

When equilibrium is reached, the mixture contains 0.015 mol of **C**.

0 9

Calculate the amount of **A** and the amount of **B**, in moles, in the equilibrium mixture.

[2 marks]

Amount of A	mol
--------------------	-----

Amount of **B** _____ mol

0 9 . 2

At a different temperature, another equilibrium mixture contains 0.30 mol of $\bf A$, 0.25 mol of $\bf B$ and 0.020 mol of $\bf C$ in 350 cm³ of solution.

Calculate the value of the equilibrium constant K_c

Deduce the units of Kc

[4 marks]

K_c _____

Units

When an excess of water is added to chloroethanal, an equilibrium mixture is formed.

$$ClCH_2CHO(aq) + H_2O(I) \rightleftharpoons ClCH_2CH(OH)_2(aq)$$

An expression for an equilibrium constant (K) for the reaction under these conditions is

$$K = \frac{[ClCH_2CH(OH)_2]}{[ClCH_2CHO]}$$

Suggest why an expression for *K* can be written without the concentration of water.

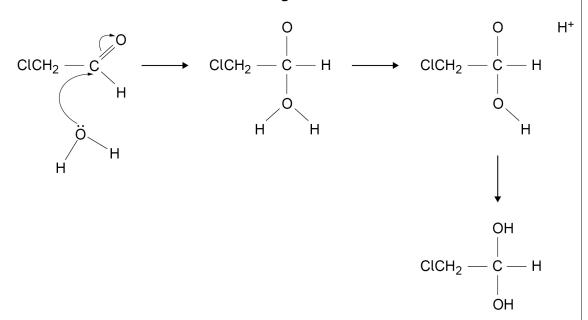
[1 mark]

Distilled water is added to 4.71 g of chloroethanal (*M*_r = 78.5) to make 50.0 cm³ of solution. The mixture is allowed to reach equilibrium.

The value of the equilibrium constant (*K*) is 37.0

Calculate the equilibrium concentration, in mol dm⁻³, of ClCH₂CH(OH)₂

[5 marks]


Concentration mol dm⁻³

|--|

Figure 6 shows an incomplete nucleophilic addition mechanism for the reaction of water with chloroethanal.

Figure 6

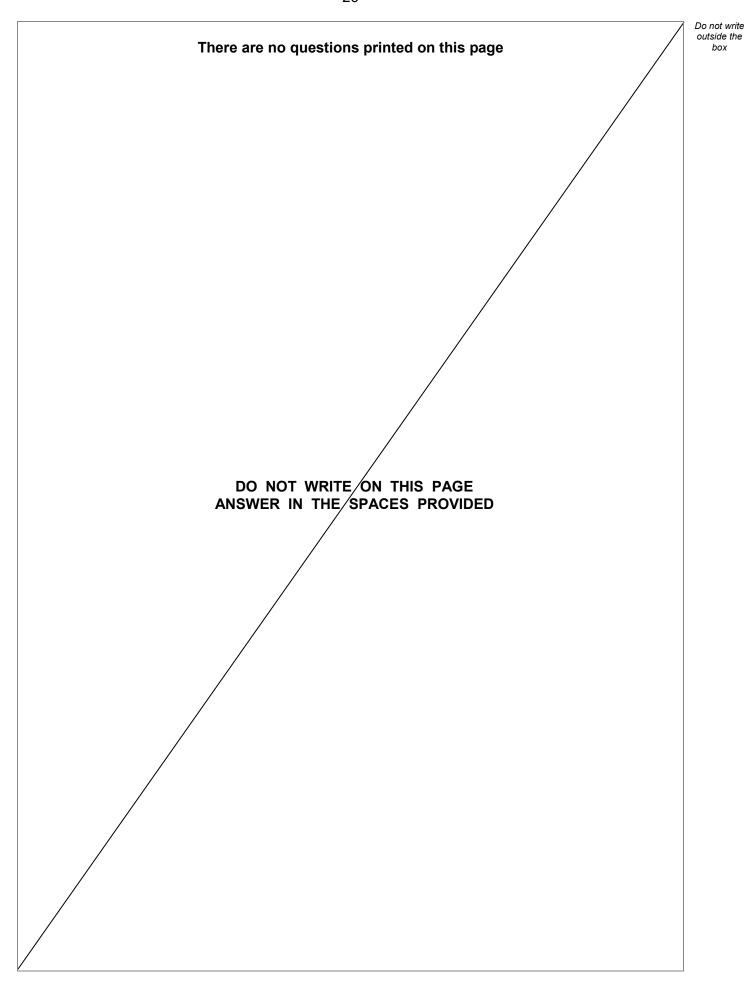
Complete the mechanism in **Figure 6** by adding **two** curly arrows, all relevant charges and any lone pairs of electrons involved.

[3 marks]

0 9 . 6

When an excess of water is added to ethanal a similar nucleophilic addition reaction occurs.

$$CH_3CHO(aq) + H_2O(I) \rightleftharpoons CH_3CH(OH)_2(aq)$$


Suggest why this reaction is slower than the reaction in Question 09.5.

[3 marks]

18

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.			
	Copyright information			
	For confidentiality purposes, all acknowledgements of third - party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.			
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.			
	Copyright © 2020 AQA and its licensors. All rights reserved.			

