AQA

Please write clearly in block capitals.
Centre number
 Candidate number \square

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level

CHEMISTRY

Paper 3

Wednesday 17 June 2020
Morning
Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
Section B	
TOTAL	

- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90 .

Advice

- You are advised to spend 70 minutes on Section A and 50 minutes on Section B.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ State why it is desirable to decrease emissions of oxides of nitrogen from vehicles. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Modern diesel vehicles use diesel exhaust fluids, such as AdBlue, to decrease |
| :--- | :--- | :--- | :--- | emissions of oxides of nitrogen.

AdBlue reacts with water in the hot exhaust gases to form ammonia.
In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water.

Give the oxidation state of nitrogen in each of $\mathrm{NO}_{2}, \mathrm{NH}_{3}$ and N_{2}
Complete the equation for the reaction between NO_{2} and NH_{3}

Oxidation state of nitrogen in
NO_{2} \qquad NH_{3} \qquad N_{2} \qquad

Equation
\qquad $\mathrm{NO}_{2}+$ \qquad $\mathrm{NH}_{3} \rightarrow$ \qquad $\mathrm{N}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$

| $\mathbf{0}$ | $\mathbf{1}$ | .4 |
| :--- | :--- | :--- | nitrogen.

Platinum in the catalytic converter acts as a heterogeneous catalyst.
State the meaning of the term heterogeneous catalyst.
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{1}$	$\mathbf{5}$ Some carbon particulates are also formed in both diesel and petrol vehicles.

Explain why carbon particulates are formed.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ | Sodium oxide forms a solution with a higher pH than magnesium oxide when equal |
| :--- | :--- | :--- | :--- | amounts, in moles, of each oxide are added separately to equal volumes of water.

State why both oxides form alkaline solutions.
Suggest why sodium oxide forms a solution with a higher pH than the solution formed from magnesium oxide.
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Give an equation for the reaction between phosphorus (V) oxide and water.

| 0 | 2 | 3 | In the Contact process, sulfur(IV) oxide is converted into sulfur(VI) oxide using |
| :--- | :--- | :--- | :--- | vanadium(V) oxide as a catalyst.

Give two equations to show how the vanadium (V) oxide acts as a catalyst in this process.

Equation 1

\qquad

Equation 2

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ Explain why complexes formed from transition metal ions are coloured.. .

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The iron content of iron tablets can be determined by colorimetry.
Method:

- Dissolve a tablet in sulfuric acid.
- Oxidise all the iron from the tablet to $\mathrm{Fe}^{3+}(\mathrm{aq})$.
- Convert the $\mathrm{Fe}^{3+}(\mathrm{aq})$ into a complex that absorbs light of wavelength 490 nm
- Make the solution up to $250 \mathrm{~cm}^{3}$
- Measure the absorbance of light at 490 nm with a colorimeter.
- Use a calibration graph to find the concentration of the iron(III) complex.

| $\mathbf{0}$ | $\mathbf{3} .2$ Calculate the energy, in J, gained by each excited electron in the absorption at $490 \mathrm{~nm}, ~$ |
| :--- | :--- | :--- |

Speed of light, $c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck constant, $h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
 iron(III) complex.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$.4	The concentration of iron(III) in the solution is $4.66 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{C}$

Calculate the mass, in mg , of iron in the tablet used to make the $250 \mathrm{~cm}^{3}$ of solution.
\qquad mg

$\mathbf{0}$	$\mathbf{4} \quad$ Cisplatin, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, is used as an anti-cancer drug.

0	$\mathbf{4} .1$	Cisplatin works by causing the death of rapidly dividing cells.

Name the process that is prevented by cisplatin during cell division.

After cisplatin enters a cell, one of the chloride ligands is replaced by a water molecule to form a complex ion, B.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ Give the equation for this reaction.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ When the complex ion \mathbf{B} reacts with DNA, the water molecule is replaced as a bond |
| :--- | :--- | :--- | forms between platinum and a nitrogen atom in a guanine nucleotide.

The remaining chloride ligand is also replaced as a bond forms between platinum and a nitrogen atom in another guanine nucleotide.

Figure 1 represents two adjacent guanine nucleotides in DNA.
Complete Figure 1 to show how the platinum complex forms a cross-link between the guanine nucleotides.

Figure 1

Question 4 continues on the next page

An experiment is done to investigate the rate of reaction in Question 04.2.

| 0 | 4 | 4 |
| :--- | :--- | :--- | intervals.

Explain how graphical methods can be used to process the measured results, to confirm that the reaction is first order.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In another experiment, the effect of temperature on the rate of the reaction in Question 04.2 is investigated.

Table 1 shows the results.

Table 1

Temperature $\boldsymbol{T} / \mathbf{K}$	$\frac{\mathbf{1}}{\boldsymbol{T}} / \mathbf{K}^{\mathbf{- 1}}$	Rate constant $\boldsymbol{k} / \mathbf{s}^{-1}$	$\mathbf{I n} \boldsymbol{k}$
293	0.00341	1.97×10^{-8}	-17.7
303	0.00330	8.61×10^{-8}	-16.3
313	0.00319	3.43×10^{-7}	-14.9
318		6.63×10^{-7}	
323	0.00310	1.26×10^{-6}	-13.6

0	4	5

| 0 | $\mathbf{4} .6$ |
| :--- | :--- | :--- | The Arrhenius equation can be written in the form

$$
\ln k=\frac{-E_{\mathrm{a}}}{R T}+\ln \mathrm{A}
$$

Use the data in Table 1 to plot a graph of $\ln k$ against $\frac{1}{T}$ on the grid in Figure 2.
Calculate the activation energy, E_{a}, in $\mathrm{kJ} \mathrm{mol}^{-1}$
The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Figure 2

E_{a} \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

| $\mathbf{0}$ | $\mathbf{5}$ | A bomb calorimeter can be used for accurate determination of the heat change during |
| :--- | :--- | :--- | combustion of a fuel.

A bomb calorimeter is a container of fixed volume that withstands the change in pressure during the reaction.

The fuel is mixed with pure oxygen in the calorimeter, ignited and the temperature change is recorded.

The total heat capacity ($C_{\text {cal }}$) of the calorimeter is calculated using a fuel for which the heat change is known.

In an experiment to calculate $C_{\text {cal }}, 2.00 \mathrm{~g}$ of hexane $\left(M_{\mathrm{r}}=86.0\right)$ is ignited. A temperature change (ΔT) of $12.4^{\circ} \mathrm{C}$ is recorded.

Under the conditions of the experiment, 1.00 mol of hexane releases 4154 kJ of energy when combusted.

| $\mathbf{0}$ | $\mathbf{5} .1$ | $\mathbf{1}$ |
| :--- | :--- | :--- | The heat energy released in the calorimeter, $q=C_{\text {cal }} \Delta T$

Calculate the heat capacity ($C_{\text {cal }}$) in $\mathrm{kJ} \mathrm{K}^{-1}$
$C_{\text {cal }}$ $\mathrm{kJ} \mathrm{K}^{-1}$

| $\mathbf{0}$ | $\mathbf{5} .2$ When the experiment is repeated with 2.00 g of octane $\left(M_{\mathrm{r}}=114.0\right)$ the ${ }^{2} \mathrm{~L}$ |
| :--- | :--- | :--- | temperature change recorded is $12.2^{\circ} \mathrm{C}$

Calculate the heat change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for octane in this combustion reaction.
If you were unable to calculate a value for $C_{\text {cal }}$ in Question 05.1 , use $6.52 \mathrm{~kJ} \mathrm{~K}^{-1}$ (this is not the correct value).
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

| $\mathbf{0}$ | $\mathbf{5}$ | .3 | State why the heat change calculated from the bomb calorimeter experiment is not an |
| :--- | :--- | :--- | :--- | enthalpy change.

\qquad
\qquad
\qquad

| 0 | 5 | 4 |
| :--- | :--- | :--- | The thermometer used to measure the temperature change of $12.2^{\circ} \mathrm{C}$ in Question 05.2 has an uncertainty of $\pm 0.1^{\circ} \mathrm{C}$ in each reading.

Calculate the percentage uncertainty in this use of the thermometer.
Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer.

Percentage uncertainty \qquad
Change \qquad
\qquad
\qquad

Turn over for the next question

| 0 | 6 | Standard electrode potentials are measured by comparison with the |
| :--- | :--- | :--- | standard hydrogen electrode.

$\mathbf{0}$	$\mathbf{6} .1$	$\mathbf{1}$ State the substances and conditions needed in a standard hydrogen electrode.

\qquad
\qquad
\qquad
\qquad
\qquad

It is difficult to ensure consistency with the setup of a standard hydrogen electrode. $\mathrm{A} \mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})$ electrode ($E^{\ominus}=+0.34 \mathrm{~V}$) can be used as a secondary standard.

A student does an experiment to measure the standard electrode potential for the $\mathrm{TiO}^{2+}(\mathrm{aq}) / \mathrm{Ti}(\mathrm{s})$ electrode using the $\mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})$ electrode as a secondary standard.

A suitable solution containing the acidified $\mathrm{TiO}^{2+}(\mathrm{aq})$ ion is formed when titanium(IV) oxysulfate $\left(\mathrm{TiOSO}_{4}\right)$ is dissolved in $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid to make $50 \mathrm{~cm}^{3}$ of solution.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{2}$ Describe an experiment the student does to show that the standard electrode |
| :--- | :--- | :--- | :--- | potential for the $\mathrm{TiO}^{2+}(\mathrm{aq}) / \mathrm{Ti}(\mathrm{s})$ electrode is -0.88 V

The student is provided with:

- the $\mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{Cu}(\mathrm{s})$ electrode set up ready to use
- solid titanium(IV) oxysulfate ($M_{\mathrm{r}}=159.9$)
- $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid
- a strip of titanium
- laboratory apparatus and chemicals.

Your answer should include details of:

- how to prepare the solution of acidified $\mathrm{TiO}^{2+}(\mathrm{aq})$
- how to connect the electrodes
- measurements taken
- how the measurements should be used to calculate the standard electrode potential for the $\mathrm{TiO}^{2+}(\mathrm{aq}) / \mathrm{Ti}(\mathrm{s})$ electrode.
\qquad

| 0 | 6 | 3 | Give the half-equation for the electrode reaction in the $\mathrm{TiO}^{2+}(\mathrm{aq}) / \mathrm{Ti}(\mathrm{s})$ electrode in |
| :--- | :--- | :--- | :--- | acidic conditions.

0	6	4	Table 2 shows some electrode potential data.

Table 2

Electrode reaction	E° / V
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0.00
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	+0.96

Use the data in Table 2 to explain why copper does not react with most acids but does react with nitric acid.

Give an equation for the reaction between copper and nitric acid.

Explanation \qquad
\qquad
\qquad
\qquad
\qquad
Equation

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each question completely fill in the circle alongside the appropriate answer.
CORRECT

METHOD \square WRONG METHODS | |
| --- |

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.

| $\mathbf{0}$ | $\mathbf{7}$ When heated, a sample of potassium chlorate $(\mathrm{V})\left(\mathrm{KClO}_{3}\right)$ produced $67.2 \mathrm{~cm}^{3}$ of |
| :--- | :--- | oxygen, measured at 298 K and 110 kPa

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

What is the amount, in moles, of potassium chlorate (V) that has decomposed?
The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

A 9.95×10^{-4}
B 1.99×10^{-3}
C 2.99×10^{-3}
D 4.48×10^{-3}
0

$\mathbf{1}$	$\mathbf{1}$	In which conversion is the metal reduced?

A $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{CrO}_{4}{ }^{2-}$
B $\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{MnO}_{4}{ }^{-}$
C $\mathrm{TiO}_{2} \rightarrow \mathrm{TiO}_{3}{ }^{2-}$
D $\mathrm{VO}_{3}{ }^{-} \rightarrow \mathrm{VO}^{2+}$

$\mathbf{1}$	$\mathbf{2} \quad$ The rate expression for the reaction between \mathbf{X} and \mathbf{Y} is

$$
\text { rate }=k[\mathbf{X}]^{2}[\mathbf{Y}]
$$

Which statement is correct?

A The rate constant has units $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
B The rate of the reaction is halved if the concentration of \mathbf{X} is halved \square and the concentration of \mathbf{Y} is doubled.
C The rate increases by a factor of 16 if the concentration of \mathbf{X} is tripled and the concentration of \mathbf{Y} is doubled.

D The rate constant is independent of temperature.

$\mathbf{1}$	$\mathbf{3}$ Which statement about pH is correct?

A The pH of a weak base is independent of temperature.
B At temperatures above 298 K , the pH of pure water is less than 7 . \square
C The pH of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid is approximately 0.30
D The pH of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid is greater than that of o $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.

| 1 | 4 | $\mathrm{~A} 0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of an acid is added slowly to $25 \mathrm{~cm}^{3}$ of a |
| :--- | :--- | :--- | $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of a base.

Which acid-base pair has the highest pH at the equivalence point?

A $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH
B $\mathrm{CH}_{3} \mathrm{COOH}$ and NH_{3}
C HCl and NaOH
D HCl and NH_{3}

```
O
```

| 1 | $\mathbf{5}$ In the test for a halide ion in aqueous solution, dilute nitric acid is added before the |
| :--- | :--- | :--- | addition of silver nitrate solution.

Why is nitric acid added?

A It increases the concentration of nitrate ions.
B It prevents the precipitation of silver compounds other than halides. \square
C It prevents the silver nitrate being precipitated.
D It provides the acidic solution required for precipitation. \square

| $\mathbf{1}$ | $\mathbf{6}$ Which shows the major product(s) formed when chlorine reacts with |
| :--- | :--- | :--- | cold, dilute, aqueous sodium hydroxide?

A NaCl only \square
B NaClO only
C NaCl and NaClO
D NaCl and NaClO_{3} \square

A $\mathrm{CuCl}_{4}{ }^{2-}$ is square planar.
B $\mathrm{NH}_{4}{ }^{+}$is tetrahedral.
C $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}$ is octahedral.
\square

$\mathbf{2}$	$\mathbf{1}$ Which compound decolourises acidified potassium manganate(VII) solution?

A $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ \square
B CuSO_{4}

D $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

A $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$
\square
C $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
D $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$

A Addition-elimination

B Electrophilic substitution
C Free-radical substitution

2	4	Which compound decolourises bromine water in the absence of sunlight?

A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$

A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
D $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$

A $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$

A $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}+\mathrm{KOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{5}+\mathrm{HCl}$
\square
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NaBr}$ \square

 acidic conditions?

A $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
B $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$

C $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$

A The conical flask was rinsed with water before the titration.

The walls of the conical flask were rinsed with water during the

END OF QUESTIONS

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2020 AQA and its licensors. All rights reserved.

