AQA $=$

Please write clearly in block capitals.
Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

AS

BIOLOGY

Paper 2

Friday 22 May 2020
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 75 .

Give two ways in which the student could ensure his samples would provide a reliable measure of the variation between individuals in each population.

1
\qquad
\qquad
2
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ The student could determine the median, mode and range from his measurement of |
| :--- | :--- | :--- | shell heights in these populations.

Give two other statistical values the student could calculate from his measurement of shell heights in these populations.

1
2 \qquad
\qquad

| 0 | 1 | .4 |
| :--- | :--- | :--- | The student noticed there was a difference in shell height between these populations of snails. He wanted to investigate if the difference was significant.

Give a suitable null hypothesis to use in his investigation and name the statistical test to use with these data.

Null hypothesis \qquad
\qquad
\qquad
Statistical test
\qquad
\qquad

| 0 | 2 | $\mathbf{1}$ Describe how a phosphodiester bond is formed between two nucleotides within a DNA |
| :--- | :--- | :--- | molecule.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 The relationship between the numbers of guanine bases (G), adenine bases (A), thymine bases (T) and cytosine bases (C) in these two strands of DNA is shown in the following equation.

$$
G=4(A+T)-C
$$

Use this information and your understanding of DNA structure to calculate the maximum number of amino acids coded by this gene.

Show your working.

Answer \qquad

\qquad

| $\mathbf{0}$ | $\mathbf{2} .4$ | $\mathbf{4}$ In the process of semi-conservative DNA replication, the two strands within a DNA |
| :--- | :--- | :--- | :--- | molecule are separated. Each then acts as a template for the formation of a new complementary strand.

Describe how the separation of strands occurs.
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3} .1$	$\mathbf{1}$ Explain how an arteriole can reduce the blood flow into capillaries.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 1 shows heart valves during one stage of a cardiac cycle.
Ventricles are visible through the open valves.
Figure 1
Valves between ventricles and arteries

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{2}$ What can you conclude from the appearance of valves in Figure 1 about |
| :--- | :--- | :--- | heart muscle activity and blood movement between:

1. ventricles and arteries?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. atria and ventricles?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 continues on the next page

are shown in Table 1

Table 1

Heart rate $/$ beats minute ${ }^{-1}$	Stroke volume $/ \mathbf{c m}^{3}$	Cardiac output $/ \mathbf{~ c m}^{3}$ minute $^{-1}$
62	80	4960

After exercise, the athlete's stroke volume increased by 30% and the cardiac output was $13832 \mathrm{~cm}^{3}$ minute $^{-1}$

Calculate the athlete's heart rate after exercise.
Give the answer to 2 significant figures. Show your working.
\qquad beats minute ${ }^{-1}$

| 0 | 4 | A student investigated the effect of ethanol, hydrochloric acid and temperature on the |
| :--- | :--- | :--- | loss of red pigment from beetroot cells.

During the procedure, the student:

- added $10 \mathrm{~cm}^{3}$ water into one test tube
- added $10 \mathrm{~cm}^{3}$ ethanol into a second test tube
- added $10 \mathrm{~cm}^{3}$ hydrochloric acid into a third test tube
- put the three tubes into a $25^{\circ} \mathrm{C}$ water bath
- cut four cylinders of tissue from a beetroot
- put a cylinder into each tube and fitted bungs
- added $10 \mathrm{~cm}^{3}$ water into a fourth test tube and put this tube into a $70^{\circ} \mathrm{C}$ water bath
- placed the fourth cylinder into this tube and fitted a bung
- later removed the cylinders from the tubes
- estimated the intensity of red pigment in each solution by eyesight.

| $\mathbf{0}$ | $\mathbf{4}$ | . $\mathbf{1}$ Give one way in which the student could ensure the first three beetroot cylinders were |
| :--- | :--- | :--- | kept at $25^{\circ} \mathrm{C}$ throughout her experiment.

\qquad
\qquad
\qquad

0	4	2	Give two variables that the student did not control in her procedure.

1 \qquad
\qquad
2 \qquad
\qquad

Question 4 continues on the next page

Figure 2 shows some of the scale graduations on the side of this measuring cylinder.
Figure 2

What is the uncertainty of taking a reading of $10 \mathrm{~cm}^{3}$ with this measuring cylinder?
Suggest how you could reduce the uncertainty calculated.
[2 marks]
Uncertainty \pm
cm^{3}

Reducing uncertainty \qquad

| $\mathbf{0}$ | $\mathbf{4} .4$ Using Figure 3, what can you conclude about the damage caused to beetroot cells by |
| :--- | :--- | :--- | water, ethanol, hydrochloric acid and different temperatures?

Provide explanations for your conclusions.
\qquad
Answer space for this question continues on the next page
Turn over for the next question Turn over

| 0 | 5 | . | 1 |
| :--- | :--- | :--- | :--- | A student investigated starch hydrolysis using the enzyme amylase.

During the procedure, the student:

- treated the starch to make it soluble
- prepared $10 \mathrm{~cm}^{3}$ of different concentrations $\left(\mathrm{mg} \mathrm{dm}^{-3}\right)$ of starch solution
- added an identical concentration of amylase to each starch solution
- measured the time in minutes to completely hydrolyse starch.

He repeated the procedure and calculated the mean time to completely hydrolyse starch in each concentration of starch solution.

Draw a table the student could use to record all of his results.
You only need to show completed column headings.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{2}$ Describe the results you would expect the student to obtain.

\qquad
\qquad
\qquad

| 0 | 5 | 3 | A competitive inhibitor decreases the rate of an enzyme-controlled reaction. |
| :--- | :--- | :--- | :--- | Explain how.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | .4 When bread becomes stale, the structure of some of the starch is changed. This |
| :--- | :--- | :--- | changed starch is called retrograded starch.

Scientists have suggested retrograded starch is a competitive inhibitor of amylase in the small intestine.

Assuming the scientists are correct, suggest how eating stale bread could help to reduce weight gain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	Trout is a type of fish, often produced commercially in trout farms.

A scientist investigated the growth of farmed trout. She determined the median mass of a large population of trout at intervals. She started measuring on the day the newly hatched fish began feeding. Her results are shown in Figure 4.

Figure 4

The best fit line shown in Figure 4 is represented using this equation.

$$
\text { median fish mass }=(m \times \text { days feeding })+50
$$

where m is the gradient of the best fit line.

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{1}$ Use Figure 4 and the equation to calculate the median mass of fish after 195 days' |
| :--- | :--- | :--- | feeding.

Show your working.

Answer

\qquad mg

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{2}$

Table 2 shows the number of chromosomes and the mass of DNA in different nuclei. All the nuclei are from the same trout.

Complete Table 2.

Table 2

Nucleus	Number of chromosomes	Mass of DNA / arbitrary units
At prophase of mitosis	80	
At telophase of mitosis		25
From an egg cell		

0	6	3	$G i v e$

\qquad
\qquad
\qquad

Question 6 continues on the next page

0	6	$\mathbf{5}$ The offspring produced from farmed trout are sterile. Suggest and explain why.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{7}$	$\mathbf{1}$ Explain how HIV affects the production of antibodies when AIDS develops in a person.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 continues on the next page
$\begin{array}{lll}0 & 7 & 2 \\ 2\end{array}$ A scientist measured the effect of a drug on the number of T cells and the number of HIV particles in blood taken from a person with AIDS. The results are shown in Figure 5.

Figure 5

Key
--- T cells
_ HIV particles
Symptoms of AIDS occur when the number of T cells is below 200 cells mm^{-3}
Use all of this information to evaluate the effectiveness of the drug in treating AIDS.
\qquad

Turn over for the next question

| 0 | 8 | .1 |
| :--- | :--- | :--- | A scientist measured the pressure in a phloem tube in a willow plant stem. He repeated his measurements to obtain nine readings.

His results are shown in Table 3.

Table 3

Phloem pressure / arbitrary units								
7.4	8.0	7.0	8.6	8.2	9.3	7.4	9.1	8.8

The percentage error of the mean phloem pressure in this phloem tube is calculated using this equation.

$$
\text { Percentage error }=\frac{\text { uncertainty in measurement }}{\text { mean }} \times 100
$$

The uncertainty in measurement is half the range of the measured values.
Calculate the percentage error of the mean phloem pressure in this phloem tube.
Show your working.

| 0 | 8 | .2 |
| :--- | :--- | :--- | The mass flow hypothesis is used to explain the movement of substances through phloem.

Use your understanding of the mass flow hypothesis to explain how pressure is generated inside this phloem tube.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 continues on the next page

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{3}$ The scientist also measured changes in the phloem pressure and changes in the rate |
| :--- | :--- | :--- | :--- | of water movement in the xylem of a willow plant at intervals during a day.

His results are shown in Figure 6.
Figure 6

Phloem pressure / arbitrary units

Rate of water movement in xylem $/ \mathrm{kg}_{\text {hour }}{ }^{-1}$

Describe the relationship between phloem pressure and the rate of water movement in xylem in this plant.
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{4}$ Phloem pressure is reduced during the hottest part of the day. Use information in |
| :--- | :--- | :--- | :--- |

Figure 6 along with your understanding of transpiration and mass flow to explain why. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{1}$ Describe the processes involved in the absorption and transport of digested lipid |
| :--- | :--- | :--- | molecules from the ileum into lymph vessels.

\qquad

0	9	2

[5 marks]
\qquad
(

END OF QUESTIONS

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

