

Simple harmonic motion

Simple harmonic motion

Phase difference in radians = $2\pi \frac{\Delta t}{T}$

 Δt is the time between successive instants where the two objects are at maximum displacement in the same direction.

For a body executing SHM, these graphs are true.

- SHM is oscillating motion where the acceleration is:
 - Proportional to displacement
 - In the **opposite** direction to displacement
- Therefore, the graphs of displacement and acceleration are in anti-phase
- The definition of SHM leads to $a = -\omega^2 x$ where a = amplitude and x = displacement
 - General solution: $x = Asin(\omega t + \varphi)$ where φ is phase difference between t=0 and x=0
 - If timing starts at the centre (i.e. x = 0, $x = Asin(\omega t)$
 - If timing starts at x = +A, then $x = Acos(\omega t)$ works

$$v = \pm \omega \sqrt{A^2 = x^2}$$

Mass-spring system

$$T = 2\pi \sqrt{\frac{m}{k}}$$

T is increased by adding mass or using a weaker spring. Note that it does not depend on g.

Simple pendulum

$$T = 2\pi \sqrt{\frac{l}{g}}$$

T is increased by increasing the length of the pendulum. Note the "small angle approximation" - the angle of swing must be less than 10° .

Variation of energy with displacement

Variation of energy with displacement

$$E_p = \frac{1}{2}kx^2$$
$$E_k = \frac{1}{2}k(A^2 - x^2)$$
$$E_{total} = \frac{1}{2}kA^2$$

Damping

- Light damping T independent of amplitude so T remains constant as amplitude decreases. Amplitude gradually decreases by the same fraction each cycle.
- **Critical damping** the system returns to equilibrium in the shortest possible time without overshooting
- Heavy damping so strong that the displaced object returns to equilibrium much more slowly than if the system is critically damped no oscillation occurs.

Forced vibrations and resonance

When a system oscillates without a periodic (driving) force applied, it oscillates at its natural frequency. Forced vibrations occur when a periodic force is applied to a system.

- As the applied frequency increases from 0:
 - Amplitude of oscillation increases until a maximum is reached at a particular frequency this is the **resonant frequency** and the amplitude then decreases again.
 - Phase difference between the displacement and the periodic force increases from 0 to $\frac{\pi}{2}$ at the maximum amplitude, and then from $\frac{\pi}{2}$ to π as frequency increases further.

When the system oscillates with maximum amplitude the phase difference between the displacement and the periodic force is $\frac{\pi}{2}$. The periodic force is then exactly in phase with the velocity of the system and reserves.

with the velocity of the system and resonance occurs.

- The lighter the damping
 - The greater the maximum amplitude at resonance
 - The closer the resonant frequency to the natural frequency
 - Hence the peak on a resonance curve will be much sharper with lighter damping.
- As the applied frequency becomes much larger than the resonant frequency:
 - Amplitude of oscillations decreases more and more
 - Phase difference between displacement and periodic force increases from $\frac{\pi}{2}$

until the displacement is π out of phase with the force.

• For an oscillating system with little to no damping, at resonance the applied frequency of the periodic force = the natural frequency of the system.