

Molecular kinetic theory model

Derivation of kinetic theory equation

- Initial momentum of a gas particle is mv Momentum after contact with the container wall is -mv Δmomentum = 2mv
- 2. Time between collisions: $v = \frac{s}{t} = \frac{2l_1}{t}$
 - Time between collisions, $t = \frac{2l_1}{v}$
- 3. Newton's second law:

$$F = \frac{\Delta mv}{\Delta t} = 2mv \times \frac{v}{2l_1} = \frac{mv^2}{l_1}$$

4. Pressure:

$$p = \frac{F}{A} = \frac{mv^2}{l_1} \times \frac{1}{l_2 l_3} = \frac{mv^2}{l_1 l_2 l_3} = \frac{mv^2}{V}$$

5. However, there are many gas particles:

$$p = \frac{mv_1^2}{V} + \frac{mv_2^2}{V} + \frac{mv_3^2}{V} \dots + \frac{mv_n^2}{V}$$
$$p = \frac{m}{V}(v_1^2 + v_2^2 + v_3^2 \dots + v_n^2)$$

Need to use an average:

average V,
$$(c_{RMS})^2 = \frac{v_1^2 + v_2^2 + v_3^2 \dots v_n^2}{n}$$

 $n(c_{RMS})^2 = v_1^2 + v_2^2 + v_3^2 \dots v_n^2$
 $\therefore \text{ overall: } p = \frac{mn(c_{RMS})^2}{V}$

...

6. However, particles do not just move in one plane ... we are dealing with a component in one of three planes - a third of the total magnitude.

$$p = \frac{mn(c_{RMS})^2}{3V}$$

7. mn =total mass, M:

$$p = \frac{M(c_{RMS})^2}{3V}$$
$$p = \frac{M}{V}$$
$$\therefore p = \frac{1}{3}p(c_{RMS})^2$$

Notes by Revisely and Milo Noblet

1

find more notes and resources at revisely.co.uk

Molecules and kinetic energy

For an ideal gas its internal energy is due only to the kinetic energy of the molecules of the gas.

Kinetic energy of a molecule
$$= \frac{total \ E_k \ of \ all \ the \ molecules}{total \ number \ of \ molecules} = \frac{\frac{1}{2}m(c_1^2 + c_2^2 \dots c_N^2)}{N} = \frac{1}{2}m(c_{RMS})^2$$

The higher the temperature of a gas the greater the mean kinetic energy of a molecule of the gas. ~

for an ideal gas, mean E_k of a molecule =
$$\frac{3}{2}kT$$

total E_k of n mol of ideal gas = $\frac{3}{2}nRT$ = (internal energy)