Ideal gases

Gas laws

The pressure of a gas is the force per unit area that the gas exerts normally on a surface. It is dependent on temperature, the volume of the gas container, and the mass of gas in the container.

- Boyle's Law: pV = constant for fixed m constant T
- Pressure of gas at constant T increased by reducing its volume as gas molecules travel less distance between impacts - hence more impacts per second and so greater pressure
- Charles' Law: $\vee \propto \mathrm{T} \Rightarrow \frac{V}{T}=$ constant for fixed m and constant p
- Any change at constant pressure is isobaric - when work is done to change the volume of a gas, energy must be transferred by heating to keep pressure constant and so:

$$
\text { work done, } \mathrm{W}=\mathrm{p} \Delta \mathrm{~V}
$$

- Pressure law: $\mathrm{p} \propto \mathrm{T} \Rightarrow \frac{p}{T}=$ constant for fixed m and constant V
- pressure of a gas at constant volume increased by raising its temperature raises average speed of molecules and so impacts on the container walls are harder and more frequent: raising pressure.

Note: T must always be in Kelvin.

Ideal gas law

- A number of assumptions must be made, including:

1. Intermolecular forces are negligible except during a collision
2. Volume of the molecules negligible compared to volume of gas
3. Collisions between molecules and between molecules and the container walls are perfectly elastic
4. Duration of a collision negligible compared to time between collisions.
5. Laws of Newtonian Mechanics apply
6. All molecules of a particular gas are identical
7. The motion of molecules is random
8. There is a large number of molecules

- Brownian motion can be seen when smoke particles are observed with a microscope - they move unpredictably. The motion of each particle is because it is bombarded unevenly and randomly by individual molecules - thus particles experience forces which change in magnitude and direction at random.

Moles

- Avogadro's constant, N_{A}, is the number of atoms in 12 g of Carbon-12.
- One atomic unit (au) is $\frac{1}{12}$ the mass of a Carbon-12 atom
- 1 mol of a substance of identical particles is the quantity of the substance that contains N_{A} particles.
- Molar mass of a substance is the mass of 1 mol of the substance

$$
\text { number of moles }=\frac{\text { mass of substance }}{\text { molar mass }}
$$

number of molecules $=N_{A} \times$ number of moles

- An ideal gas is one which obeys Boyle's Law.

Combining gas laws: $\frac{p V}{T}=$ constant for fixed m of ideal gas

$$
\text { For } 1 \text { mol of any ideal gas, } \frac{p v}{T}=R
$$

Graph of pV against T for n mol is a straight line through absolute zero and has gradient nR.

Hence $p V=n R T$ where n is number of moles
$p V=N k T$ where N is the number of molecules

