



Gravitational fields 

Gravitational fields 

A force field is a region in which a body experiences a non-contact force. A force field 
can be represented as a vector, the direction of which must be determined by 
inspection. 

• Gravity is a universal attractive force which acts between all matter 

- magnitude of a force between point masses,   where G is the 

gravitational constant 

• A gravitational field can be represented by field lines - also known as lines of force.  
- This is the path followed by a small mass placed close to a massive body. 
- Note that for a radial field, the field lines point towards the centre. In a uniform 

field e.g. close to the Earth’s surface, field lines act straight down - parallel to 
each other and evenly spaced. 

• The gravitational field strength, g, is the force per unit mass on a small test mass 
placed in the field.    

  

• In a radial field, the magnitude of: 

  

Gravitational potential 

• Gravitational potential at a point is the gravitational potential energy per unit mass of 
a small test mass.  
- This is equal to the work done per unit mass to move an object from infinity 

(where potential = 0) to that point. 

gravitational potential,  unit: J kg-1 

work done moving mass m: ∆W = m∆V 

gravitational potential in a radial field:   

- The negative sign is due to the reference point being infinity, and the fact that 
other than at infinity the force is in fact attractive.  
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• ∆V can be found from the area of a g-r graph  
• Equipotentials are surfaces of constant potential - no work needs to be done to 

move along an equipotential surface. 
• Potential gradient at a point in a gravitational field is the change of potential per 

metre at that point 

• In general, for ∆V over a small distance ∆r, potential gradient  

• Gravitational field strength is the negative of potential gradient:  

  

Orbits and satellites 

If an object is moving parallel to a planet’s surface at the correct speed such that the 
centripetal force required is matched exactly by the force of gravity, it will orbit.  

For a satellite orbiting at distance r from the centre of a planet:    

showing m irrelevant  

• For geostationary orbit, Tsat = Tplanet, so for earth T≈ 86 400 s  

  

Kepler's 3rd Law proof and derivation: 
• For an object in orbit around mass M:  

1.   so   

2. Combining with   gives  , or   

3. Everything is constant except T and r, meaning T2 ∝ r3 - Kepler’s 3rd Law 

4. To further prove K3L, if  , taking logarithms gives   

5.   

6.   

7.   

8.   

9. Hence a graph of log T against log r has gradient 1.5 and positive y-intercept of 
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Escape velocity 

For an object to go into orbit once launched rather than fall back to Earth, it must never 

run out of kinetic energy. So supplied  

tic Equating Ek and V · m allows us to work out that: 

escape velocity,   

Energy considerations 

A satellite  . Equating forces in orbit gives   or   

Hence to be in orbit,   

Potential energy is calculated from gravitational potential:   · m 

The total energy is the sum:   
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