Gravitational fields

Gravitational fields

A force field is a region in which a body experiences a non-contact force. A force field can be represented as a vector, the direction of which must be determined by inspection.

- Gravity is a universal attractive force which acts between all matter
- magnitude of a force between point masses, $F=\frac{G m_{1} m_{2}}{r^{2}}$ where G is the gravitational constant
- A gravitational field can be represented by field lines - also known as lines of force.
- This is the path followed by a small mass placed close to a massive body.
- Note that for a radial field, the field lines point towards the centre. In a uniform field e.g. close to the Earth's surface, field lines act straight down - parallel to each other and evenly spaced.
- The gravitational field strength, g , is the force per unit mass on a small test mass placed in the field.
$g=\frac{F}{m}$
- In a radial field, the magnitude of:

$$
g=\frac{G M}{r^{2}}
$$

Gravitational potential

- Gravitational potential at a point is the gravitational potential energy per unit mass of a small test mass.
- This is equal to the work done per unit mass to move an object from infinity (where potential $=0$) to that point.
gravitational potential, $V=\frac{W}{m}$ unit: J kg^{-1}
work done moving mass $m: \Delta W=m \Delta V$
gravitational potential in a radial field: $V=-\frac{G M}{r}$
- The negative sign is due to the reference point being infinity, and the fact that other than at infinity the force is in fact attractive.
- ΔV can be found from the area of a g-r graph
- Equipotentials are surfaces of constant potential - no work needs to be done to move along an equipotential surface.
- Potential gradient at a point in a gravitational field is the change of potential per metre at that point
. In general, for ΔV over a small distance Δr, potential gradient $=\frac{\Delta V}{\Delta r}$
- Gravitational field strength is the negative of potential gradient:

$$
g=-\frac{\Delta V}{\Delta r}
$$

Orbits and satellites
If an object is moving parallel to a planet's surface at the correct speed such that the centripetal force required is matched exactly by the force of gravity, it will orbit.

For a satellite orbiting at distance r from the centre of a planet: $\frac{G M_{\text {planet }} m}{r^{2}}=\frac{m v^{2}}{r}=m r \omega^{2}$ showing m irrelevant

- For geostationary orbit, $\mathrm{T}_{\text {sat }}=\mathrm{T}_{\text {planet, }}$ so for earth $\mathrm{T} \approx 86400 \mathrm{~s}$
$-T=\frac{2 \pi}{\omega}$
Kepler's 3rd Law proof and derivation:
- For an object in orbit around mass M:

1. $\frac{G M}{r^{2}}=r \omega^{2}$ so $\frac{G M}{r^{3}}=\omega^{2}$
2. Combining with $T=\frac{2 \pi}{\omega}$ gives $\frac{G M}{r^{3}}=\frac{4 \pi^{2}}{T^{2}}$, or $T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$
3. Everything is constant except T and r, meaning $T^{2} \propto r^{3}-$ Kepler's 3rd Law
4. To further prove K 3 L , if $T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$, taking logarithms gives $\log \left(T^{2}\right)=\log \left(\frac{4 \pi^{2}}{G M} r^{3}\right)$
5. $\log \left(T^{2}\right)=\log \left(\frac{4 \pi^{2}}{G M}\right)+\log \left(r^{3}\right)$
6. $2 \log \left(T^{2}\right)=3 \log (r)+\log \left(\frac{4 \pi^{2}}{G M}\right)$
7. $\log \left(T^{2}\right)=1.5 \log (r)+0.5 \log \left(\frac{4 \pi^{2}}{G M}\right)$
8. $\log \left(T^{2}\right)=1.5 \log (r)+\log \left(\sqrt{\frac{4 \pi^{2}}{G M}}\right)$
9. Hence a graph of log T against log r has gradient 1.5 and positive y-intercept of $\frac{2 \pi}{\sqrt{G M}}$

Escape velocity

For an object to go into orbit once launched rather than fall back to Earth, it must never run out of kinetic energy. So supplied $\frac{E_{k}}{m} \geq V$
tic Equating E_{k} and V. m allows us to work out that:

$$
\text { escape velocity, } v=\sqrt{\frac{2 G M}{r}}
$$

Energy considerations

A satellite $E_{k}=\frac{1}{2} m v^{2}$. Equating forces in orbit gives $\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$ or $v^{2}=\frac{G M}{r}$
Hence to be in orbit, $E_{k}=\frac{G M m}{2 r}$
Potential energy is calculated from gravitational potential: $E_{p}=-\frac{G M}{r} \cdot \mathrm{~m}$
The total energy is the sum: $E_{T}=\frac{G M m}{2 r}+\left(-\frac{G M m}{r}\right)$

$$
E_{T}=-\frac{G M m}{2 r}
$$

