

Gravitational fields

Gravitational fields

A force field is a region in which a body experiences a non-contact force. A force field can be represented as a vector, the direction of which must be determined by inspection.

- Gravity is a universal attractive force which acts between all matter
 - magnitude of a force between point masses, $F = \frac{Gm_1m_2}{r^2}$ where G is the gravitational constant
- A gravitational field can be represented by field lines also known as lines of force.
 - This is the path followed by a small mass placed close to a massive body.
 - Note that for a radial field, the field lines point towards the centre. In a uniform field e.g. close to the Earth's surface, field lines act straight down parallel to each other and evenly spaced.
- The gravitational field strength, g, is the force per unit mass on a small test mass placed in the field.

$$g = \frac{F}{m}$$

• In a radial field, the magnitude of:

$$g = \frac{GM}{r^2}$$

Gravitational potential

- Gravitational potential at a point is the gravitational potential energy per unit mass of a small test mass.
 - This is equal to the work done per unit mass to move an object from infinity (where potential = 0) to that point.

gravitational potential,
$$V = \frac{W}{m}$$
 unit: J kg⁻¹
work done moving mass m: $\Delta W = m\Delta V$
gravitational potential in a radial field: $V = -\frac{GM}{r}$

- The negative sign is due to the reference point being infinity, and the fact that other than at infinity the force is in fact attractive.

- ΔV can be found from the area of a g-r graph
- Equipotentials are surfaces of constant potential no work needs to be done to move along an equipotential surface.
- **Potential gradient** at a point in a gravitational field is the change of potential per metre at that point
- In general, for ΔV over a small distance Δr , potential gradient = $\frac{\Delta V}{r}$
- Gravitational field strength is the negative of potential gradient:

$$g = -\frac{\Delta V}{\Delta r}$$

Orbits and satellites

If an object is moving parallel to a planet's surface at the correct speed such that the centripetal force required is matched exactly by the force of gravity, it will orbit.

For a satellite orbiting at distance r from the centre of a planet: $\frac{GM_{planet}m}{r^2} = \frac{mv^2}{r} = mr\omega^2$

showing m irrelevant

• For **geostationary** orbit, $T_{sat} = T_{planet}$, so for earth T \approx 86 400 s

$$-T = \frac{2\pi}{\omega}$$

Kepler's 3rd Law proof and derivation:

• For an object in orbit around mass M:

1.
$$\frac{GM}{r^2} = r\omega^2 \operatorname{so} \frac{GM}{r^3} = \omega^2$$
2. Combining with $T = \frac{2\pi}{\omega}$ gives $\frac{GM}{r^3} = \frac{4\pi^2}{T^2}$, or $T^2 = \frac{4\pi^2}{GM}r^3$
2. Even thing is constant event T and r meaning $T^2 = r^2$. Kepler's

- 3. Everything is constant except T and r, meaning $T^2 \propto r^3$ Kepler's 3rd Law
- 4. To further prove K3L, if $T^2 = \frac{4\pi^2}{GM}r^3$, taking logarithms gives $log(T^2) = log(\frac{4\pi^2}{GM}r^3)$

5.
$$log(T^2) = log(\frac{4\pi^2}{GM}) + log(r^3)$$

6.
$$2log(T^2) = 3log(r) + log(\frac{4\pi^2}{GM})$$

7.
$$log(T^2) = 1.5log(r) + 0.5log(\frac{4\pi^2}{GM})$$

8.
$$log(T^2) = 1.5log(r) + log(\sqrt{\frac{4\pi^2}{GM}})$$

9. Hence a graph of log T against log r has gradient 1.5 and positive y-intercept of $\frac{2\pi}{\sqrt{GM}}$

Escape velocity

For an object to go into orbit once launched rather than fall back to Earth, it must never run out of kinetic energy. So supplied $\frac{E_k}{m} \ge V$ tic Equating E_k and V · m allows us to work out that:

escape velocity,
$$v = \sqrt{\frac{2GM}{r}}$$

Energy considerations

A satellite $E_k = \frac{1}{2}mv^2$. Equating forces in orbit gives $\frac{mv^2}{r} = \frac{GMm}{r^2}$ or $v^2 = \frac{GM}{r}$ Hence to be in orbit, $E_k = \frac{GMm}{2r}$ Potential energy is calculated from gravitational potential: $E_p = -\frac{GM}{r} \cdot m$ The total energy is the sum: $E_T = \frac{GMm}{2r} + (-\frac{GMm}{r})$

$$E_T = -\frac{GMm}{2r}$$

3