©revisely

Circular motion

Formulae

$$
\begin{aligned}
& \text { Angular speed, } \omega=\frac{\theta}{t}=2 \pi f \text { unit: rad s-1 } \\
& \text { Linear velocity, } v=\frac{2 \pi r}{T}=2 \pi f r=r \omega
\end{aligned}
$$

Magnitude of centripetal acceleration is given by $a=\frac{v^{2}}{r}$

$$
\text { Using } F=m a, F=\frac{m v^{2}}{r}=m r \omega^{2}
$$

Humpback bridge and "looping the loop"
To keep a string taut, the magnitude of the centripetal force must be greater than or equal to the weight.

$$
\begin{aligned}
& \quad m v^{2} \geq m g \text { or alternatively } m r \omega^{2} \geq m g \\
& \text { Tension in the string at the top }=\frac{m v^{2}}{r}-m g \\
& \text { Tension in the string at the bottom }=\frac{m v^{2}}{r}+m g
\end{aligned}
$$

Keeping a car on a humpback bridge requires weight to equal the centripetal force (i.e. $m g \geq \frac{m v^{2}}{r}$)
Support force from the road $=m g-\frac{m v^{2}}{r}$

Motion around a banked track

Motion around a banked track

The vertical component is weight: $\mathrm{mg}=\mathrm{R} \cos \theta$
The horizontal component is centripetal force: $\mathrm{F}=\frac{m v^{2}}{r}=R \sin \theta$
For there to be no sideways friction: $v=\sqrt{g r \tan \theta}$

