Capacitance

Capacitance

A capacitor is any device used to store charge. The capacitance of an isolated conductor is the ratio of charge stored to the change in electric potential.

$$
\text { capacitance, } C=\frac{Q}{V} \text { unit: Farad, } \mathrm{F}
$$

For a parallel plate capacitor, $C=\frac{\varepsilon_{0} \varepsilon_{r} A}{d}$

Energy stored

Charging a capacitor means transferring charge from the plate at lower potential to the plate at higher potential, which requires energy. Thus work done in charging = energy stored.

If a capacitor is charged to V by Q then the area under a V - Q graph gives the work done.

$$
\text { Work done, } W=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}
$$

Discharging

Charge left on a capacitor t s after it starts discharging, $Q=Q_{0} e-\frac{t}{R C}$
For a discharging capacitor the graphs of charge, voltage and current against time all have the same shape, so this formula works for V and I too.

The time constant is t taken for Q to fall to $\frac{1}{e}$ of its previous value. $T=R C$
From this, we can calculate that the time for charge or voltage to half in value is 0.693RC.

Charging

The rate of charge leaving from or arriving on a capacitor depends on how much charge is already there. More work needs to be done to push electrons onto a partially charged capacitor than an empty one.

$$
\text { For a charging capacitor, } Q=Q_{0}\left(1-e^{-\frac{t}{R C}}\right)
$$

The graphs of Q and V against t show that charge \& voltage increase rapidly at first, but the rate of change decreases as a maximum is approached. This means this equation
works for V as well as Q, but not I (which looks the same for both a charging and discharging capacitor). Note that these don't work if current is kept constant.

Increasing R leads to a shallower charging or discharging curve which takes longer to reach its maximum or minimum. R decreases the current - decreasing the rate of flow of charge.

$$
I=\frac{Q}{t}
$$

Polarised molecules

Some molecules have one part more positive and another more negative - they are polarised.

If a polarised molecule is placed in an electric field, the two ends respond differently to the field, moving in opposite directions, rotating the molecule until it lines up with the field.

