(
 Pearson

Pearson Edexcel Level 3 Advanced Level GCE in Physics (9PH0)

List of data, formulae and relationships

Issue 1

Summer 2017

List of data, formulae and relationships

Acceleration of free fall
Boltzmann constant
$g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \quad$ (close to Earth's surface)
$k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \quad$

Coulomb law constant
$k=\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
Electron charge
$e=-1.60 \times 10^{-19} \mathrm{C}$
Electron mass

$$
m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}
$$

Electronvolt
Gravitational constant

$$
1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
$$

$$
G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
$$

Gravitational field strength
$g=9.81 \mathrm{~N} \mathrm{~kg}^{-1} \quad$ (close to Earth's surface)
Planck constant
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~S}$
Permittivity of free space
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
Proton mass
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
Speed of light in a vacuum
$c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Stefan-Boltzmann constant
$\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{2} \mathrm{~K}^{-4}$
Unified atomic mass unit

$$
u=1.66 \times 10^{-27} \mathrm{~kg}
$$

Mechanics

Kinematic equations of motion

$$
\begin{aligned}
& s=\frac{(u+v) t}{2} \\
& v=u+a t \\
& s=u t+1 / 2 a t^{2} \\
& v^{2}=u^{2}+2 a s
\end{aligned}
$$

Forces

$$
\begin{aligned}
& \Sigma F=m a \\
& g=\frac{F}{m} \\
& W=m g
\end{aligned}
$$

$$
\text { moment of force }=F x
$$

Work, energy and power

$$
\begin{aligned}
& \Delta W=F \Delta s \\
& E_{\mathrm{k}}=1 / 2 m v^{2} \\
& \Delta E_{\text {grav }}=m g \Delta h \\
& P=\frac{E}{t} \\
& P=\frac{W}{t}
\end{aligned}
$$

efficiency $=\frac{\text { useful energy output }}{\text { total energy input }}$
efficiency $=\underline{\text { useful power output }}$ total power input

Momentum

$$
p=m v
$$

Electric circuits

Potential difference

$$
V=\frac{W}{Q}
$$

$\underline{\text { Resistance }}$

$$
R=\frac{V}{I}
$$

Electrical power, energy and efficiency

$$
\begin{aligned}
& P=V I \\
& P=I^{2} R \\
& P=\frac{V^{2}}{R} \\
& W=V I t
\end{aligned}
$$

Resistivity

$$
R=\frac{\rho l}{A}
$$

Current

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& I=n q v A
\end{aligned}
$$

Materials

Density

$$
\rho=\frac{m}{V}
$$

Stokes' law

$$
F=6 \pi \eta r v
$$

$\underline{\text { Hooke's law }}$

$$
F=k \Delta x
$$

Pressure

$$
p=\frac{F}{A}
$$

Young modulus

$$
\begin{aligned}
& \text { Stress } \sigma=\frac{F}{A} \\
& \text { Strain } \varepsilon=\frac{\Delta x}{x}
\end{aligned}
$$

$$
E=\frac{\sigma}{\varepsilon}
$$

Elastic strain energy

$$
\Delta E_{\mathrm{el}}=1 / 2 F \Delta x
$$

Waves and Particle Nature of Light

Wave speed

$$
v=f \lambda
$$

Speed of a transverse wave on a string

$$
v=\sqrt{\frac{T}{\mu}}
$$

Intensity of radiation

$$
I=\frac{P}{A}
$$

Power of a lens

$$
P=\frac{1}{f}
$$

$$
P=P_{1}+P_{2}+P_{3}+\ldots
$$

Thin lens equation

$$
\frac{1}{u}+\frac{1}{v}=\frac{1}{f}
$$

Magnification for a lens

$$
m=\frac{\text { image height }}{\text { object height }}=\frac{v}{u}
$$

Diffraction grating

$$
n \lambda=d \sin \theta
$$

Refractive index

$$
\begin{aligned}
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& n=\frac{c}{v}
\end{aligned}
$$

Critical angle

$$
\sin C=\frac{1}{n}
$$

Photon model

$$
E=h f
$$

Einstein's photoelectric equation

$$
h f=\phi+1 / 2 m v^{2}{ }_{\text {max }}
$$

de Broglie wavelength

$$
\lambda=\frac{h}{p}
$$

Further mechanics

Impulse

$$
F \Delta t=\Delta p
$$

Kinetic energy of a non-relativistic particle

$$
E_{\mathrm{k}}=\frac{p^{2}}{2 m}
$$

Motion in a circle

$$
\begin{aligned}
& v=\omega r \\
& T=\frac{2 \pi}{\omega} \\
& F=m a=\frac{m v^{2}}{r} \\
& a=\frac{v^{2}}{r} \\
& a=r \omega^{2}
\end{aligned}
$$

Centripetal force

$$
\begin{aligned}
& F=\frac{m v^{2}}{r} \\
& F=m r \omega^{2}
\end{aligned}
$$

Fields

Coulomb's law

$$
F=k \frac{Q_{1} Q_{2}}{r^{2}}
$$

$$
\text { where } k=\frac{1}{4 \pi \varepsilon_{0}}
$$

Electric field

$$
\begin{aligned}
& E=\frac{F}{Q} \\
& E=k \frac{Q}{r^{2}} \\
& E=\frac{V}{d}
\end{aligned}
$$

Electric potential

$$
V=k \frac{Q}{r}
$$

Capacitance

$$
C=\frac{Q}{V}
$$

Energy stored in a capacitor

$$
W=1 / 2 Q V
$$

Capacitor discharge

$$
Q=Q_{0} \mathrm{e}^{-t / R C}
$$

Resistor - capacitor discharge

$$
\begin{aligned}
I & =I_{0} \mathrm{e}^{-t / R C} \\
V & =V_{0} \mathrm{e}^{-t / R C}
\end{aligned}
$$

ln a magnetic field

$$
\begin{aligned}
& F=B I l \sin \theta \\
& F=B q v \sin \theta
\end{aligned}
$$

Faraday's and Lenz's laws

$$
\varepsilon=\frac{-\mathrm{d}(N \phi)}{\mathrm{d} t}
$$

Root-mean-square values

$$
\begin{aligned}
& V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}} \\
& I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}}
\end{aligned}
$$

Nuclear and particle physics

In a magnetic field

$$
r=\frac{p}{B Q}
$$

Thermodynamics

Heating

$$
\begin{aligned}
& \Delta E=m c \Delta \theta \\
& \Delta E=L \Delta m
\end{aligned}
$$

Molecular kinetic theory

$$
\begin{aligned}
& \frac{1}{2} m<c^{2}>=\frac{3}{2} k T \\
& p V=\frac{1}{3} N m<c^{2}>
\end{aligned}
$$

Ideal gas equation

$$
p V=N k T
$$

Stefan-Boltzmann law

$$
\begin{aligned}
& L=\sigma T^{4} A \\
& L=4 \pi r^{2} \sigma T^{4}
\end{aligned}
$$

Wien's law

$$
\lambda_{\max } T=2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}
$$

Space

Radiant energy flux

$$
I=\frac{L}{4 \pi d^{2}}
$$

Redshift of electromagnetic radiation

$$
z=\frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}
$$

Cosmological expansion

$$
v=H_{0} d
$$

Radioactive decay

$$
\begin{aligned}
A & =\lambda N \\
\frac{\mathrm{~d} N}{\mathrm{~d} t} & =-\lambda N \\
\lambda & =\frac{\ln 2}{t^{1 / 2}} \\
N & =N_{0} \mathrm{e}^{-\lambda t} \\
A & =A_{0} \mathrm{e}^{-\lambda t}
\end{aligned}
$$

Gravitational fields

Gravitational force

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

Gravitational field

$$
g=\frac{G m}{r^{2}}
$$

Gravitational potential

$$
V_{\text {grav }}=\frac{-G M}{r}
$$

Oscillations

Simple harmonic motion

$$
\begin{aligned}
& F=-k x \\
& a=-\omega^{2} x \\
& x=A \cos \omega t \\
& v=-A \omega \sin \omega t \\
& a=-A \omega^{2} \cos \omega t \\
& T=\frac{1}{f}=\frac{2 \pi}{\omega} \\
& \omega=2 \pi f
\end{aligned}
$$

Simple harmonic oscillator

$$
\begin{aligned}
T & =2 \pi \sqrt{\frac{m}{k}} \\
T & =2 \pi \sqrt{\frac{l}{g}}
\end{aligned}
$$

BLANK PAGE

BLANK PAGE

