- Introduction
- Multiplication
- Division
- Negative indices
- Fractions with negative indices
- Rational indices
- Simplifying negative powers
- Expressions terms in the form ax
^{n} - Equation types
- Summary
- Exam questions

- Introduction
- HCF types
- Grouping types
- Quadratic expressions
- HCF types
- Difference of two square types
- Trinomials by grouping
- Trinomials by inspection 1 | 2 | 3 | 4 | 5 | 6 | 7
- Misc exercise 1 | 2 | 3
- Exam questions

- Completing the square for x
^{2}terms - Completing the square for 2x
^{2}, 3x^{2}, ... terms - Completing the square for negative terms
- Sketching positive graphs
- Sketching negative graphs
- Exam questions

- Solve by factorising
- Solve by completing the square
- Solve by the quadratic formula
- Solving in some function of x
- Roots and discriminant
- Common types of discriminant questions
- Exam questions

- Elimination method 1 | 2 | 3 | 4 | 5 | 6
- Substitution method
- Substitution method example
- Exam questions

- Introduction
- Rules for reversing the inequality sign
- Solving linear inequalities
- Solving double inequalities
- Linear inequalities in two variables
- Solving quadratic inequalities
- Exam questions

- The factor theorem
- Showing that x-1 is a factor of a cubic polynomial
- Factorising a cubic polynomial (Method 1)
- Factorising a cubic polynomial (Method 2)
- Solving a cubic equation
- Finding constants in a polynomial given the factors
- Exam questions

- Simplifying algebraic fractions
- Addition and subtraction of algebraic fractions 1
- Addition and subtraction of algebraic fractions 2
- Multiplication of algebraic fractions
- Simplifying "stacked" fractions
- Division of algebraic fractions
- Exam questions

- Equation of a line in the form y = mx + c
- Equation of a line in the form y - y
_{1}= m(x - x_{1}) - Distance between two points
- Mid-point of a line segment
- Equation of a parallel line
- Equation of a perpendicular bisector

- Two straight lines
- Parabola and a straight line
- Nature of intersection
- Tangent to a curve
- Hyperbola and straight line

- Equation of a circle
- Finding the centre and radius
- Equation of a tangent
- Equation of a circle through 3 points
- Circle properties
- Exam questions

- Introduction
- Converting to Cartesian form
- Converting trig. types to Cartesian form
- Sketching curves 1
- Sketching curves 2
- Parametric equation of a circle
- Parametric equation of a parabola
- Finding points of intersection between a parametric and cartesian equation
- Exam questions

- The Modulus function: |x|
- Graphing y = |f(x)|
- Graphing y = f(|x|)
- Modulus Equations
- Example: How to solve |x + 1| = -2x - 5
- Example: How to solve |x - 2| = 3
- Example: How to solve |3x + 9| = |2x + 1|
- Modulus Inequalities
- Exam questions

- f(x) notation
- Domain and range 1
- Domain and range 2
- Combination of functions | Example 1 | Example 2
- The inverse of a function | Example 1 | Example 2 | Example 3
- Graphical relationship between f(x) and its inverse | Example 1 | Example 2
- Exam questions

- Baisc graphs used in transformations
- Translations
- Reflections
- Stretches
- y = af(x) and y = f(ax)
- How y = af(x) stretches y = f(x) by scale factor a parallel to the y-axis
- How y = f(ax) stretches y = f(x) by scale factor 1/a parallel to the x-axis
- Asymptotes
- Exam questions

- Introduction
- Summary excercise
- Denominator Contains 2 or 3 Linear Factors
- Denominator contains 2 linear factors
- Summary Exercise: 2 linear factors
- Denominator contains 3 linear factors
- Summary Exercise: 3 linear factors
- Repeated Linear Factors
- Repeated Linear Factors (Alternative Method)
- Exam questions

- What is nCr?
- Binomial Expansion using the nCr method
- Finding a certain term or coefficient in a Binomial expansion
- Binomial expansion using Pascal's triangle method
- Binomial expansion formula as an alternative to the nCr method
- Rational powers
- Validity
- Partial fractions
- Exam questions

- Arithmetic sequences and series
- Sum of the first n terms
- Finding a and d given two terms
- Working with consecutive terms
- Exam questions

- Introduction
- Geometric Progression Example 1 | 2 | 3
- Proof of sum of first n terms, Sn
- Sum to infinity | Example
- Exam questions

- Simple way to learn the trig. ratios for 30, 45 and 60 degrees
- Simple way to work out the trig. ratios for multiples of 30, 45 and 60 degrees

- Trigonometric graphs
- Translations parallel to the y-axis
- Translations parallel to the x-axis
- Reflection in the x-axis
- Reflection in the y-axis
- Stretch parallel to the y-axis: y = kf(x)
- Stretch parallel to the x-axis: y = f(kx)
- Combining transformations

- Finding the area of a triangle with two sides and an included angle | Proof
- Sine Rule
- Finding the length of a side of a non-right triangle
- Finding an angle of a non-right triangle
- The Ambiguous Case
- Cosine Rule
- Arcs, Sectors and Segments
- What is a radian?
- Arc length and sector area (Degrees)
- Arc length and sector area (Radians)
- Area of a segment (Degrees)
- Area of a segment (Radians)
- Exam questions

- What is the Quadrant Rule/CAST diagram?
- Using the Quadrant Rule to solve trig. equations
- Solving trig. equations in various ranges
- Solving trig. equations with multiple angles
- Solving trig. equations that can be factorised 1 | 2 | 3 | A common mistake

- tanθ = sinθ/cosθ and sin
^{2}θ+cos^{2}θ = 1 - Proving trig. identities 1 | 2 | 3
- cos(θ) = cos(-θ) and sin(θ) = -sin(-θ)
- Solving trig. equations using identities 1 | 2 | 3
- Exam questions

- arcsin(x) or sin
^{-1}(x) - arccos(x) or cos
^{-1}(x) - arctan(x) or tan
^{-1}(x) - Examples using inverse trigonometric functions

- sin
^{2}x + cos^{2}x = 1, 1 + tan^{2}x = sec^{2}x, 1 + cot^{2}x = cosec^{2}x - Proving Pythagorean identities
- Solving equations using Pythagorean identities

- sin(A + B), cos(A + B) and tan(A + B) addition formulae
- Finding exact trig. ratios
- Exact values of sin(A + B) etc
- Proving identitites using the Addition Formulae
- Equations that use the Addition Formulae

- Identities for sin(2A), cos(2A) and tan(2A)
- Proving identities using the Double Angle identities
- Solving equations using Double Angle identities

- Asin(x) + Bcos(x) = Rsin(x + a)
- Asin(x) - Bcos(x) = Rsin(x - a)
- Acos(x) + Bsin(x) = Rcos(x - a)
- Acos(x) - Bsin(x) = Rcos(x + a)
- Solving equations using Harmonic identities
- Max and min values
- Max and min values - fractional type
- Exam questions

- What is an exponential function?
- What is a log?
- Logarithm Rules
- Equations
- Logarithms - change of base
- Logarithms - change of base (examples)
- Simplifying and expanding equations
- Solving equations where x is in the power
- Solving equations that contain log terms
- Solving equations that contain logs with different bases
- Solving equations that contain exponential functions
- Simultaneous equations 1 | 2 | 3
- Solving inequalities
- Exam questions

- Exponential Functions
- Transformations of exponential graphs
- The natural log function: ln(x)
- Exam questions

- Modelling curves - converting to linear form
- Modelling curves - converting to linear form - example 1
- Modelling curves - converting to linear form - example 2

- The gradient function dy/dx
- Differentiation from 1st principles
- Terms of the form ax
^{n} - Extending to root types
- Extending to fractional types
- The second derivative
- Exam questions

- What are stationary points?
- An example of finding a stationary point
- Nature of a stationary point using 1st differential
- Nature of a stationary point using 2nd differential
- An example of finding stationary points and their nature
- Applications of stationary points
- Increasing and decreasing functions
- Exam questions

- Exponential function: e
^{x} - Natural log function: ln(x)
- Trig. functions: sin(x), cos(x) and tan(x)
- How to differentiate sinθ from first principles
- How to differentiate cosθ from first principles

- Polynomial to a rational power
- Exponential types
- Natural log types
- Trigonometric types
- Trigonometric functions to a power
- Trigonometric functions to a power (part 2)

- Exam Questions - Methods of differentiation
- Exam Questions - Tangents, normals and stationary points
- Exam Questions - Exponential rates of change

- Differentiating Parametric functions
- Second Differential
- Tangents and normals
- Finding stationary points
- Exam questions

- Differentiating Implicit equations
- Using the Product Rule with Implicit equations
- Tangents to Implicit curves
- Finding stationary points
- Nature of stationary points
- Exam questions

- Connected Rates of Change Example
- Three connected rates of change (Best Method)
- Three connected rates of change (Alternative Method)
- Example of Cone type problem
- Exam questions

- (ax + b)
^{n}type functions - Summary Exercise: (ax + b)
^{n}type functions - Exponential functions: e
^{x}, e^{ax}and e^{(ax + b)} - Reciprocal functions 1/x and 1/(ax + b)
- Integrals of the form: f'(x)/f(x)
- Integrals of the form: f'(x)/f(x) - Example
- Why the modulus sign?
- Why the modulus sign? - example
- Integrals of the form: f'(x)e
^{f(x)}

- Integrals of sin(x), cos(x) and sec
^{2}(x) - Integrals of the form sin(ax + b), cos(ax + b) and sec
^{2}(ax + b) - Identity types: 1 | 2 | 3
- sin
^{2}types - cos
^{2}types - Exam questions

- Examples: 1 | 2
- Square root types (Method 1)
- Square root types (Method 2)
- Integrating trig. functions
- Integrating exponential types
- Integration by substitution with limits
- Integrating trig. functions with limits
- Exam questions

- Introduction
- Applying integration by parts twice over
- Worked Example
- Natural Log types: ln(x)
- e
^{ax}sin(bx) and e^{ax}cos(bx) types - How to integrate e
^{ax}sin(bx) and e^{ax}cos(bx) - Example - Integrate e
^{x}cos(x) - Example - Integrate e
^{2x}sin(3x) - Example - Integrate e
^{-3x}cos(5x) - Integration by parts with limits
- Proof of the formula
- Exam questions

- Determining which method to use
- Step 1 - Is it a standard Integral?
- Step 2a - Is it a product of the form f[g(x)]g'(x)?
- Step 2b - If not, try integration by parts or substitution
- Step 3 - Is it a fraction?
- Examples: 1 | 2 | 3 | 4 | 5 | 6
- Exam questions

- Area under a curve
- Area below the x-axis
- Area above and below the x-axis
- Area bounded by two curves
- Exam questions

- What do we mean by seperating the variables?
- Where does the Constant C go?
- Handling the constant in log types
- Exponential and trig. types

Numerical Methods

- Graphical method of finding roots
- Change of sign method
- Iteration
- How does Iteration work?
- Newton-Raphson method
- Exam questions

- What is a vector and a scalar quantity?
- 2D vector notation
- Vector notation
- 2D position vectors
- Position vectors
- Equal and negative vectors
- 2D multiplying a vector by a scalar
- Multiplying a vector by a scalar
- 2D addition and subtraction
- Addition and subtraction of vectors
- Magnitude of a 2 dimensional vector
- Distance between 2 points (2D)
- Magnitude of a 3 dimensional vector
- Unit vectors
- Exam questions

Proof

Pure papers are for the new specification, C1-C4 are from the old but are still mostly applicable.

Pure Paper 1

C1

- June 2015
- June 2014
- June 2013
- January 2013
- June 2012
- January 2012
- June 2011
- January 2011
- June 2010
- January 2010
- June 2009
- January 2009
- June 2008
- January 2008
- June 2007

C2

- June 2015
- June 2014
- June 2013
- January 2013
- June 2012
- January 2012
- June 2011
- January 2011
- June 2010
- January 2010
- June 2009
- January 2009
- June 2008
- January 2008
- June 2007

C3

- June 2015
- June 2014
- June 2013
- January 2013
- June 2012
- January 2012
- June 2011
- January 2011
- June 2010
- January 2010
- June 2009
- January 2009
- June 2008

C4

- June 2015
- June 2014
- June 2013
- June 2012
- January 2012
- June 2011
- January 2011
- June 2010
- January 2010
- June 2009
- January 2009
- June 2008
- January 2008
- June 2007

For worked papers, see the top of this section.